【sklearn】详解classification_report的分类报告计算

简介

说来惭愧,好久不写博客,让我动笔的竟然是sklearn一个小小的api功能,以前评价模型用的都是总体的准确率,第一次用sklearn提供的分类报告功能竟然搞不懂是怎么计算的,怎么还分类别。就像下面这样:
在这里插入图片描述

嗯,这都啥呀?老实说第一次看我只看懂了准确率即accuracy是怎么计算的。。。

计算

首先y_true是真实结果,y_pred是预测出的标签,它们分别如下:

y_true
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report from sklearn.preprocessing import StandardScaler # 设置中文显示 plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 # 3. 故障报警影响因素分析 # 3.1 特征选择 features = df[['车速', '总电压', '总电流', 'SOC', '驱动电机控制器温度', '驱动电机转速', '驱动电机转矩', '驱动电机温度', '电池单体电压最高值', '电池单体电压最低值', '最高温度值', '最低温度值']] # 3.2 标签 labels = df['最高报警等级'] # 3.3 数据标准化 scaler = StandardScaler() features_scaled = scaler.fit_transform(features) # 3.4 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(features_scaled, labels, test_size=0.2, random_state=42) # 3.5 训练随机森林分类器 rfc = RandomForestClassifier(n_estimators=100, random_state=42) rfc.fit(X_train, y_train) # 3.6 模型评估 y_pred = rfc.predict(X_test) print(classification_report(y_test, y_pred)) # 3.7 特征重要性分析 feature_importances = pd.Series(rfc.feature_importances_, index=features.columns) feature_importances = feature_importances.sort_values(ascending=False) # 3.8 可视化特征重要性 plt.figure(figsize=(10, 8)) sns.barplot(x=feature_importances.values, y=feature_importances.index) plt.title('特征重要性分析') plt.xlabel('重要性得分') plt.ylabel('特征') plt.savefig(r"C:\Users\wei\Pictures\特征重要性分析.png", dpi=300) plt.show()解决代码的问题,进行优化返回
最新发布
03-15
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值