预测零售/金融/制造数据,TimesFM时间序列模型实战指南

TimesFM是Google Research开发的一个预训练时间序列基础模型,使用包含1000亿现实世界时间序列数据集进行了预训练,拥有2亿参数,该模型在各种现实世界的预测基准上展现出令人印象深刻的零样本性能。

零样本性能,指模型在没有接受过任何特定任务训练数据的情况下,对该任务的预测能力。

本文将通过使用TimesFM模型对月度进口普通化妆品备案数进行预测来介绍模型的部署和运行过程,以及如何解读最终的输出结果。

01

运行环境配置

操作系统:Ubuntu 22.04

# 克隆官方模型加载和推理仓库
git clone https://github.com/google-research/timesfm.git
cd timesfm

# 配置专用虚拟环境
conda env create -f environment_cpu.yml
# 激活环境
conda activate tfm_env

# 安装timesfm库
pip install -e .

02

模型载入

import timesfm

# 模型载入参数设置
tfm = timesfm.TimesFm(
    context_len=32,
    horizon_len=5,
    input_patch_len=32,
    output_patch_len=128,
    num_layers=20,
    model_dims=1280,
    backend="cpu",
)

# 模型载入
tfm.load_from_checkpoint(repo_id=&
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值