概率导论(极限理论)

这篇博客介绍了概率论中的极限理论,包括马尔可夫不等式、切比雪夫不等式、弱大数定律、中心极限定理和强大数定律。通过这些理论,探讨了随机变量序列在n趋向无穷时的性质,特别是样本均值如何逼近随机变量的期望。中心极限定理作为概率论的基础,提供了利用正态分布近似计算的依据,而大数定律则阐述了样本均值在概率上的收敛性。
摘要由CSDN通过智能技术生成

前言

讨论的是随机变量序列渐进(在 n → ∞ n\rightarrow \infty n时的)性质.为使用有限样本进行统计推断提供了理论基础。
X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn是独立同分布的随机变量序列.均值均为 μ \mu μ,标准差 σ \sigma σ.定义序列 S n S_n Sn:
S n = X 1 + X 2 + . . . + X n S_n=X_1+X_2+...+X_n Sn=X1+X2+...+Xn
基本性质:

  • v a r ( S n ) = n σ 2 var(S_n)=n\sigma ^2 var(Sn)=nσ2,方差是发散的, S n S_n Sn肯定不收敛(收敛时方差为0)。 E ( S n ) = n μ , S n E(S_n)=n\mu ,S_n E(Sn)=nμ,Sn发散。
  • 样本均值 M n = S n n M_n=\frac{S_n}{n} Mn=nSn
  • E ( M n ) = μ , v a r ( M n ) = v a r ( S n ) n 2 = σ 2 n E(M_n)=\mu ,var(M_n)=\frac{var(S_n)}{n^2}=\frac{\sigma ^2}{n} E(Mn)=μ,var(Mn)=n2var(Sn)=nσ2,样本均值的期望收敛于随机变量的期望,方差趋于0,说明样本均值趋近于随机变量的期望。(大数定律)
  • 构造随机变量序列 Z n = S n − n μ σ n Z_n=\frac{S_n-n\mu}{\sigma \sqrt n} Zn=σn Snnμ,这个式子分子是 S n S_n Sn E ( S n ) E(S_n) E(Sn)的偏移,绝对偏移是不太好的,所以分母带上了 S n S_n Sn的标准差。 E ( Z n ) = 0 , v a r ( Z n ) = 1 E(Z_n)=0,var(Z_n)=1 E(Zn)=0,var(Zn)=1,这说明 Z n Z_n Zn既不发散也不收敛。(中心极限定理)

马尔可夫和切比雪夫不等式

这两个不等式的作用是利用均值和方差去分析事件的概率。随机变量的均值和方差易于计算,但分布不知道时有用。

马尔可夫不等式

马尔可夫不等式:随机变量 X ≥ 0 , ∀ a &

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值