新型模型架构(参数化状态空间模型、状态空间模型变种)

    Transformer 模型自问世以来,在自然语言处理、计算机视觉等多个领域得到了广泛应用,并展现出卓越的数据表示与建模能力。然而,Transformer 的自注意力机制在计算每个词元时都需要利用到序列中所有词元的信息,这导致计算和存储复杂度随输入序列长度的平方级别增长。在处理长序列时,这种复杂性会消耗大量的计算资源与存储空间。为了解决这个问题,研究人员致力于新型模型架构的设计。这些新型模型大多基于参数化状态空间模型(State Space Model, SSM)进行设计,在长文本建模效率方面相比 Transformer 有了大幅改进,同时也保持了较好的序列建模能力。

图片名称
不同模型的比较(T 表示序列长度,H 表示输入表示的维度,N 表示状态 空间模型压缩后的维度,M 表示 Hyena 每个模块的层数)

参数化状态空间模型

    状态空间模型是一种动态时域模型,在控制系统、经济学等多个领域都有着广泛应用。近年来,深度学习领域也开始引入参数化状态

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三月七꧁ ꧂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值