题目
提示工程作为医疗专业人员的一项重要新兴技能:教程
论文地址:https://pubmed.ncbi.nlm.nih.gov/37792434/
摘要
提示工程是一个相对较新的研究领域,指设计、完善和实现提示或指令的实践,这些提示或指令指导大型语言模型(LLM)的输出以帮助完成各种任务。随着LLM的出现,其中最受欢迎的ChatGPT在短短2个月内就吸引了超过1亿用户的关注,人工智能(AI),特别是生成式AI,已经进入大众视野。这是前所未有的范式转变,不仅因为人工智能的使用变得更加广泛,而且因为法学硕士在医疗保健领域可能产生的影响。随着越来越多的患者和医疗专业人员使用基于人工智能的工具,法学硕士是该群体中最受欢迎的代表,解决提高这项技能的挑战似乎是不可避免的。本文总结了即时工程的研究现状,同时旨在为广大医疗保健专业人员提供实用建议,以改善他们与法学硕士的互动。
关键词 人工智能;人工智能;数字健康;未来;技术;聊天GPT; GPT-4;大型语言模型;语言模型;法学硕士;迅速的;提示;及时工程;人工智能工具;工程;专业医护人员;决策;法学硕士;聊天机器人;聊天机器人;会话代理;会话代理;自然语言处理;自然语言处理
随着大型语言模型(LLM)的出现,其中最流行的ChatGPT在短短两个月内就吸引了超过1亿用户的关注,人工智能(AI),尤其是生成式AI已经进入大众视野。这是前所未有的范式转变,不仅因为人工智能的使用变得更加广泛,而且因为法学硕士在医疗保健领域可能产生的影响。
大量研究表明,LLM可以为医疗任务和医疗保健流程做出贡献,以减轻医疗专业人员的负担,提高效率并降低成本。医疗保健机构已经开始投资生成式人工智能,医疗公司已经开始将LLM纳入其业务,医学协会发布了有关使用这些模型的指南,医学课程也开始涵盖这种新技术。因此,一项新的基本技能出现了:提示工程。
提示工程是一个相对较新的研究领域,指设计、完善和实施提示或指令的实践,这些提示或指令指导法学硕士的输出以帮助完成各种任务。它本质上是与人工智能系统有效交互以优化其效益的实践。在医疗专业人员和一般医疗保健的背景下,这可能包括以下内容:
- 决策支持:医疗专业人员可以使用提示工程来优化人工智能系统,以帮助决策过程,例如诊断、治疗选择或风险评估。
- 管理协助:可以设计提示来促进管理任务,例如患者安排、记录保存或计费,从而提高效率。
- 患者参与:提示工程设计可用于改善医疗保健提供者和患者之间的沟通。例如,人工智能系统可以被设计为发送用药提醒、预约安排或生活方式建议的提示。
- 研究和开发:在研究场景中,可以精心设计提示来协助完成文献综述、数据分析和生成假设等任务。
- 培训和教育:可以设计提示来促进医疗专业人员的教育,包括最新治疗和程序的持续培训。
- 公共卫生:在更大范围内,即时工程可以通过帮助分析人口健康数据、预测疾病趋势或教育公众来协助公共卫生举措。
因此,快速工程有可能提高医疗保健服务的效率、准确性和有效性,使其成为医疗专业人员日益重要的技能。本文总结了提示工程的研究现状,同时旨在为广大医疗保健专业人员提供实用建议,以改善他们与LLM的互动。
提示工程的现状
LLM(尤其是 ChatGPT)的使用存在重大限制和风险。首先,由于 ChatGPT 不是实时更新的,其训练数据仅包含截至 2021 年 11 月的信息,因此可能缺乏关键的、最新的医学研究或临床指南的变化,可能会影响其响应的质量和相关性。此外,ChatGPT 无法访问或处理个人用户数据或上下文,这限制了其提供个性化医疗建议的能力,并增加了数据误解的风险用户还迫切需要与合格的医疗保健专业人员验证 ChatGPT 的每一个响应,因为模型的答案是根据其训练数据的模式生成的,可能不准确或不安全。该模型无法理解或传递敏感信息也可能导致患者体验不佳。重要的是,潜在的患者保密行为可能会违反隐私法,例如美国 1996 年的《健康保险流通与责任法案》。尽管它具有作为辅助工具的潜力,但这些局限性需要仔细考虑其在医疗保健中的应用。
虽然这些风险很大,但潜在的结果可能会超过它们;因此,自 ChatGPT 推出以来,改进设计更好提示的需求已广泛增长。已经有人尝试解决这个问题。一项研究旨在设计一个以模式形式呈现的即时工程技术目录,这些技术已用于解决与法学硕士交谈时的常见问题。另一项研究为特定受众、从事医学领域自然语言处理的研究人员或学术作家提供了提示工程的最新进展总结。一项研究介绍了人工智能系统通过即时工程生成健康意识消息的潜力。尽管该领域已有研究,但显然还没有针对医疗专业人员的全面而实用的指南。这就是本文旨在填补的空白。
如何改进提示工程:与任何基本技能一样,提高提示工程能力需要更好地理解该技术的基本原理,获得对使用该技术的系统的实际接触,并不断完善和迭代基于该技术的技能。关于反馈。以下是医疗保健专业人员可以采取的一些具体步骤,以提高他们的提示工程技能:
- 了解人工智能和机器学习模型工作原理的基本原理可以为建立提示工程技能奠定基础。如图所示,无需任何先验技术或编码知识即可获得这种理解。
- 熟悉他们正在使用的LLM,因为每个系统都有自己的一套功能和限制。了解两者有助于制定更有效的提示。
- 熟能生巧;因此,尝试定期与LLM互动并记下可产生最有帮助和最准确结果的提示可能会有所裨益。
在现实场景中不断测试提示也很重要,因为它们的有效性在实际应用中得到最好的评估。更好的 LLM 提示的具体建议。除了这些一般方法之外,这里还总结了具体建议和实际示例,医疗保健专业人员可能希望考虑提高他们在提示工程方面的技能。下图总结了这些建议及其示例以及 ChatGPT 的关键术语、限制和最流行的插件。
尽可能具体,提示越具体,响应就越准确和集中。以下是提示示例:
- 不太具体:“告诉我有关心脏病的信息。”
- 更具体:“冠状动脉疾病最常见的危险因素是什么?”
描述背景并提供围绕问题的背景,人们必须将与 ChatGPT 的讨论视为与刚认识的人进行的讨论,后者可能仍然能够回答他们的问题并解决他们的挑战。以下是一个示例提示:“我正在写一篇关于针对医疗保健人员的 ChatGPT 提示工程的提示和技巧的文章。您能否列出一些提示和技巧以及一些具体的提示示例?”
尝试不同的提示样式,提示的样式可以显着影响答案。人们可以尝试不同的格式,例如要求 ChatGPT 生成一份有关其简介的列表或提供主题摘要。以下是一个示例:
- 直接问题:“COVID-19 的症状是什么?”
- 索取清单:“列出 COVID-19 的所有潜在症状。”
- 索要摘要:“概述 COVID-19 的主要症状和进展。”
- 流程:“提供诊断 COVID-19 的分步流程。”
确定提示的总体目标,首先准确描述正在寻求什么样的输出。无论是为一篇文章获取创意、要求对高级科学主题进行具体描述,还是提供围绕问题的示例列表,定义它都有助于 ChatGPT 得出更相关的答案。以下是一个示例:“我想列出 5 个想法,以便在科学活动中进行演示,以使我的研究成果更容易理解。”
要求它发挥作,这可以帮助简化获取信息或在特定设置中寻找输入的所需过程。对于没有先验知识的新主题,谨慎的做法是仅获取基本描述;此外,还可以请ChatGPT充当导师,帮助您逐步深入到详细的主题。以下是几个示例:
- “充当数据科学家并向医生解释快速工程。”
- “充当我的营养师,为我提供有关均衡地中海饮食的建议。”
迭代和完,即使一个人在即时工程方面的技能很先进,LLM的变化也如此动态,以至于人们在第一次即时尝试后很少得到所寻求的最佳回应。不断地重复提示是我们应该习惯的。还鼓励LLM的用户要求法学硕士根据之前回复的反馈修改输出。
使用主题,您可以通过单击 ChatGPT 仪表板左栏中的特定主题导航回特定讨论。通过这种方式,人们可以基于在上一个线程中已经收到的详细信息和响应来构建。这可以节省大量时间,因为无需描述相同的情况以及 ChatGPT 收到的有关其响应的所有反馈。
提出开放式问题,开放式问题可以让用户更广泛、更全面地了解用户的情况。例如,问“你感觉怎么样?”而不是“你感到疼痛吗?”允许更广泛的反应,从而可以更深入地了解患者的精神、情绪或身体状态。开放式问题还可以帮助生成更大的数据集来训练人工智能模型,使它们更加有效。最后,提出开放式问题可以让 ChatGPT 通过利用其在各种主题上的培训来更好地展示其潜力。这可能会带来医疗保健专业人员可能没有想到的更多意想不到的、创造性的解决方案或想法。以下是一个示例:
- 封闭式问题:“运动对于骨质疏松症患者重要吗?”
- 开放性问题:“定期的身体活动对骨质疏松症患者有何益处?”
请求示例,请求具体示例有助于阐明概念或想法的含义,使其更容易理解。特别是对于复杂的医学术语或程序,示例可以提供有助于理解的实用背景。此外,示例通常有助于形象化抽象或复杂的想法。
当ChatGPT提供示例时,它可以展示某个概念或规则如何在不同场景中应用。这对于医疗保健来说是有益的,因为理论知识需要与现实世界的应用联系起来。
时间意,这是指模型对时间相关概念的理解及其根据时间生成上下文相关响应的能力。因此,描述提示和所需输出相关的时间线有助于LLM提供更有用的答案。以下是示例:
- 没有时间参考:“描述膝盖手术后的愈合过程。”
- 有时间参考:“在膝关节手术后的前六周愈合过程中,患者通常可以期待什么?”
设定切合实际的期,了解 ChatGPT 等人工智能工具的局限性至关重要,因为它有助于设定对输出的切合实际的期望。例如,ChatGPT 在 2021 年 11 月之后无法访问任何数据或信息;它不能提供个性化的医疗建议或取代专业人士的判断。以下是一个示例:
- 不切实际的提示:“本月发表的有关阿尔茨海默病的最新研究是什么?”
- 现实提示:“截至 2021 年,阿尔茨海默病治疗方面的一些重大研究突破是什么?”
使用一次性/几次提示方法 一次性提示方法是一种 ChatGPT 可以基于用户提供的单个示例或上下文片段生成答案的方法。以下是示例:
- 为新的数字听诊器设备生成 10 个可能的名称。
- 我喜欢的一个名字是DigSteth。
通过少样本策略,ChatGPT 可以根据用户提供的一些示例或上下文片段生成答案。以下是示例: • 为新的数字听诊器设备生成 10 个可能的名称。
- 我喜欢的名称包括:
- Digital • Steth
- 听诊器提示
改进提示工程的最简单方法之一是要求 ChatGPT 参与流程并为用户设计提示。以下是一个示例:“我现在可以使用什么提示来在此线程/任务中从您那里获得更好的输出?
结论
由于即时工程技能在全世界范围内引起了极大的兴趣,特别是在医疗保健领域,因此在医学课程和研究生教育中教授本文描述的实用方法非常重要。虽然生成式人工智能的技术细节和背景可能会包含在未来的课程中,但对于医学生来说,在此之前学习使用法学硕士的最实用技巧将是有用的。对每个 LLM 用户的一般信息应该是,他们可以使用此类人工智能工具来扩展他们的知识、能力和想法,而不是代表他们解决问题。理想情况下,这种方法和心态应来自训练有素的医疗专业人员,他们可以与患者分享。总之,随着越来越多的患者和医疗专业人员使用基于人工智能的工具(法学硕士是该群体中最受欢迎的代表),解决提高这项技能的挑战似乎是不可避免的。此外,由于这样做不需要任何技术知识或先前的编程专业知识,因此仅快速工程就可以被视为一项重要的新兴技能,有助于充分发挥人工智能在医学和医疗保健领域的潜力。