pandas文档阅读记录

Dataframe

这是Dataframe:
在这里插入图片描述
若用一个字典初始化df,则键为列标,值按列排。
正如spreadsheet中的形式:
在这里插入图片描述
从df中选取某一列结果是Series,类似字典的索引操作。
可以对df进行一些操作,看看里面数据:
如 df.describe()输出数值列的统计信息:

In [9]: df.describe()
Out[9]: 
             Age
count   3.000000
mean   38.333333
std    18.230012
min    22.000000
25%    28.500000
50%    35.000000
75%    46.500000
max    58.000000

Series

Dataframe中每一列是一个Series:
在这里插入图片描述
可以初始化Series:
在这里插入图片描述
这样初始化的Series也没有列名。因其只有一列。

如何读写tabular数据

一图胜千言(这图太好了。官方文档真是优美)
在这里插入图片描述
官方提示:读取完数据后记得看一下,做个简单的检查。
直接打印df是默认打印前5行;head方法可以指定打印几行,tail方法可以打印后几行。

查看每列数据类型

df.dtypes查看每列数据类型。字符串用object类型表示。

df.info()

提供了technical information:
在这里插入图片描述
891行,index从0-891

如何选择df中数据

选出特定的列

在这里插入图片描述

age_sex = titanic[["Age", "Sex"]]

上面这个括号中,外层括号是选取某一列的作用;内层括号是Python的列表list。文档真详细!

选取age>35的行

above_35 = titanic[titanic["Age"] > 35]

这个作用于每一行的Age属性,返回布尔Series:

In [14]: titanic["Age"] > 35
Out[14]: 
0      False
1       True
2      False
3      False
4      False
       ...  
886    False
887    False
888    False
889    False
890    False
Name: Age, Length: 891, dtype: bool

选取Pclass为2 或3的行

在这里插入图片描述
这种方式等价于用|选取2或3:
在这里插入图片描述

选择特定数据形成新df

希望从左边选取四个数据形成右边的:
在这里插入图片描述
在这里插入图片描述
上面代码中,loc方法是根据行列条件筛选的。逗号前面是行筛选条件,后面是列筛选条件。这两个条件都可以为布尔条件、切片等。
iloc是根据位置(序列位置)选取的。且选取完成后,还可以对选取后的数据赋值:
在这里插入图片描述
上图中,就对三个没名字的值赋值为anonymous。

根据数据画图

效果:
在这里插入图片描述

plot.*

在这里插入图片描述

 air_quality = pd.read_csv("data/air_quality_no2.csv", index_col=0, parse_dates=True)

这个index_col参数指定列表的第一列作为index

根据现有列生成新列

问题描述:
在这里插入图片描述

根据现有列运算出新列

在这里插入图片描述
[]括号操作就是创建新列,其中每个元素都乘以1.882。

apply()函数

也是逐元素的,作用于一个Series(可能在df中的一列)

summary statistics统计数据

问题描述:
在这里插入图片描述

聚合统计数据

默认情况忽略掉空值,按行操作。

根据种类求聚合统计数据

问题描述:
在这里插入图片描述
在这里插入图片描述

下面这个图,和上面的实现的功能一样,只是换了操作顺序:
在这里插入图片描述

还可以根据多个条件分组:
在这里插入图片描述

根据类别计数

在这里插入图片描述
对应代码:
在这里插入图片描述
value_counts()函数作用为:对一列数据中每个不同的类别数据出现次数计数。这等价于先group,然后再计数:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值