定义
如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
算法实例
- 数据预处理
- 分割数据集
- 对数据集进行标准化
- 进行分类预测
数据预处理
特征值:
row_id:等级的id
x,y:坐标
accuracy:准确度
time:时间戳
place_id:位置
import pandas as pd
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
data = pd.read_csv('train.csv')
# 处理数据
# 1.缩小数据 查询数据删选(数据量过于庞大,节约时间)
data = data.query('x > 1.0 &x < 1.25 & y>2.5 & y<2.75')
# 2.处理时间数据
time_value = pd.to_datetime(data['time'],unit='s')
print(time_value)
# 3.将签到位置少于n个用户的数据删除
place_count = data.groupby('place_id').count()
tf = place_count[place_count.row_id>3].reset_index()
data = data[data['place_id'].isin(tf.place_id)]
注意knn算法是需要将数据进行标准化的,若此处直接进行预测,效果并不好。
# 对测试集和训练集的特征值进行标准化 应该在进行算法流程之前进行的
std = StandardScaler()
x_train = std.fit_transform(x_train)
x_test = std.fit_transform(x_test)
# 进行算法流程
knn = KNeighborsClassifier(n_neighbors=5)
# fit predict score
knn.fit(x_train,y_train)
# 得出预测结果
y_predict = knn.predict(x_test)
print('预测的目标签到位置为:',y_predict)
# 得出准确率
print('预测的准确率:',knn.score(x_test,y_test))
输出结果:
预测的目标签到位置为: [4932578245 6683426742 8048985799 … 3312463746 4932578245 5606572086]
预测的准确率: 0.4078014184397163
仔细观察数据,发现row_id这一列对预测结果并没有正向的价值,试一试删除该列。
data = data.drop(['row_id'],axis=1)
# 取出数据中的特征值和目标值
y = data['place_id']
x = data.drop(['place_id'],axis=1)
# 进行数据的分割训练集和测试集、
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=.25)
# 对测试集和训练集的特征值进行标准化 应该在进行算法流程之前进行的
std = StandardScaler()
x_train = std.fit_transform(x_train)
x_test = std.fit_transform(x_test)
# 进行算法流程
knn = KNeighborsClassifier(n_neighbors=5)
# fit predict score
knn.fit(x_train,y_train)
# 得出预测结果
y_predict = knn.predict(x_test)
print('预测的目标签到位置为:',y_predict)
# 得出准确率
print('预测的准确率:',knn.score(x_test,y_test))
输出结果:
预测的目标签到位置为: [3312463746 4423196276 8048985799 … 3083446565 1097200869 1097200869]
预测的准确率: 0.48486997635933804
准确率有所上升,但是效果还是不太好!