我才发现configure指令在matlab神经网络中有着重要的作用!

Configure:配置网络输入和输出,以达到最好的匹配输入和目标数据。使用这个质量可以减少训练次数,减少训练时间。
用法:
net = configure(net,x,t)
net = configure(net,x)
net = configure(net,‘inputs’,x,i)
net = configure(net,‘outputs’,t,i)
例:
[x,t] = simplefit_dataset;
net = feedforwardnet(20); view(net)%此时没有输入和输出;
net = configure(net,x,t); view(net)%已经通过调试,产生过输入和输出;使用configure和不使用的区别:
[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = configure(net,x,t);
net = train(net,x,t);

在这里插入图片描述在这里插入图片描述使用configure和不使用的区别:
[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = configure(net,x,t);
net = train(net,x,t);
在这里插入图片描述在这里插入图片描述对于数据量较大的素材,使用configure训练迭代27次,即可满足要求,耗时不足一秒;不使用迭代了1000次,耗时9秒,当然训练效果更好。所以在满足要求的情况下可以使用configure减少训练次数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值