从零开始入门 K8s | 可观测性:监控与日志

本文介绍了Kubernetes监控和日志的重要性,详细讲解了监控的资源监控、性能监控、安全监控和事件监控四大类型,以及Kubernetes监控接口的标准化进程。此外,探讨了Prometheus作为开源社区的监控标准,并介绍了kube-eventer工具。在日志方面,阐述了日志的场景和采集方法,推荐了Fluentd采集方案。最后,概述了阿里云容器服务的监控和日志增强功能,包括SLS、ARMS、AHAS和Cloud Monitor等产品。
摘要由CSDN通过智能技术生成

一、背景

监控和日志是大型分布式系统的重要基础设施,监控可以帮助开发者查看系统的运行状态,而日志可以协助问题的排查和诊断。

在 Kubernetes 中,监控和日志属于生态的一部分,它并不是核心组件,因此大部分的能力依赖上层的云厂商的适配。Kubernetes 定义了介入的接口标准和规范,任何符合接口标准的组件都可以快速集成。

二、监控

监控类型

先看一下监控,从监控类型上划分,在 K8s 中可以分成四个不同的类型:

1.资源监控

比较常见的像 CPU、内存、网络这种资源类的一个指标,通常这些指标会以数值、百分比的单位进行统计,是最常见的一个监控方式。这种监控方式在常规的监控里面,类似项目 zabbix telegraph,这些系统都是可以做到的。

2.性能监控

性能监控指的就是 APM 监控,也就是说常见的一些应用性能类的监控指标的检查。通常是通过一些 Hook 的机制在虚拟机层、字节码执行层通过隐式调用,或者是在应用层显示注入,获取更深层次的一个监控指标,一般是用来应用的调优和诊断的。比较常见的类似像 jvm 或者 php 的 Zend Engine,通过一些常见的 Hook 机制,拿到类似像 jvm 里面的 GC 的次数,各种内存代的一个分布以及网络连接数的一些指标,通过这种方式来进行应用的性能诊断和调优。

3.安全监控

安全监控主要是对安全进行的一系列的监控策略,类似像越权管理、安全漏洞扫描等等。

4.事件监控

事件监控是 K8s 中比较另类的一种监控方式。之前的文章为大家介绍了在 K8s 中的一个设计理念,就是基于状态机的一个状态转换。从正常的状态转换成另一个正常的状态的时候,会发生一个 normal 的事件,而从一个正常状态转换成一个异常状态的时候,会发生一个 warning 的事件。通常情况下,warning 的事件是我们比较关心的,而事件监控就是可以把 normal 的事件或者是 warning 事件离线到一个数据中心,然后通过数据中心的分析以及报警,把相应的一些异常通过像钉钉或者是短信、邮件的方式进行暴露,弥补常规监控的一些缺陷和弊端。

Kubernetes 的监控演进

在早期,也就是 1.10 以前的 K8s 版本。大家都会使用类似像 Heapster 这样的组件来去进行监控的采集,Heapster 的设计原理其实也比较简单。

首先,我们在每一个 Kubernetes 上面有一个包裹好的 cadvisor,这个 cadvisor 是负责数据采集的组件。当 cadvisor 把数据采集完成,Kubernetes 会把 cadvisor 采集到的数据进行包裹,暴露成相应的 API。在早期的时候,实际上是有三种不同的 API:

  • 第一种是 summary 接口;
  • 第二种是 kubelet 接口;
  • 第三种是 Prometheus 接口。

这三种接口,其实对应的数据源都是 cadvisor,只是数据格式有所不同。而在 Heapster 里面,其实支持了 summary 接口和 kubelet 两种数据采集接口,Heapster 会定期去每一个节点拉取数据,在自己的内存里面进行聚合,然后再暴露相应的 service,供上层的消费者进行使用。在 K8s 中比较常见的消费者,类似像 dashboard,或者是 HPA-Controller,它通过调用 service 获取相应的监控数据,来实现相应的弹性伸缩,以及监控数据的一个展示。
 
这个是以前的一个数据消费链路,这条消费链路看上去很清晰,也没有太多的一个问题,那为什么 Kubernetes 会将 Heapster 放弃掉而转换到 metrics-service 呢?其实这个主要的一个动力来源是由于 Heapster 在做监控数据接口的标准化。为什么要做监控数据接口标准化呢?
 

  • 第一点在于客户的需求是千变万化的,比如说今天用 Heapster 进行了基础数据的一个资源采集,那明天的时候,我想在应用里面暴露在线人数的一个数据接口,放到自己的接口系统里进行数据的一个展现,以及类似像 HPA 的一个数据消费。那这个场景在 Heapster 下能不能做呢?答案是不可以的,所以这就是 Heapster 自身扩展性的弊端;

 

  • 第二点是 Heapster 里面为了保证数据的离线能力,提供了很多的 sink,而这个 sink 包含了类似像 influxdb、sls、钉钉等等一系列 sink。这个 sink 主要做的是把数据采集下来,并且把这个数据离线走,然后很多客户会用 influxdb 做这个数据离线,在 influxdb 上去接入类似像 grafana 监控数据的一个可视化的软件,来实践监控数据的可视化。

但是后来社区发现,这些 sink 很多时候都是没有人来维护的。这也导致整个 Heapster 的项目有很多的 bug&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值