论文阅读Reasoning with Latent Structure Refinement for Document-Level Relation Extraction

本文提出了一种名为LSR的新型模型,用于动态学习文档图并进行多跳推理以提升文档级关系抽取的性能。模型不依赖规则或共指消解,而是通过迭代细化策略自动生成和更新文档结构,从而更有效地融合信息。在实验中,LSR显示了其在DocRe上的优势,但在生物领域的CDR数据集上表现稍逊,主要是因为MDP节点构造的问题。LSR强调了端到端学习和结构细化在捕获复杂交互中的重要性,为未来研究提供了方向。
摘要由CSDN通过智能技术生成

Reasoning with Latent Structure Refinement for Document-Level Relation Extraction

0. Summary

对于文档级关系抽取,现存的方法通过语义树、共指消解或者启发式的方法创建静态文档图。本文提出了一种自动生成文档图的方法。并且增加了细化策略,可以增量式的聚合相关信息并进行多条推理。我们的模型是基于结构化注意力构建的。 使用矩阵树定理的变体,我们的模型能够生成特定于任务的依赖结构,用于捕获实体之间的非局部交互。 我们进一步开发了迭代细化策略,使我们的模型能够基于上次迭代动态构建潜在结构,从而使模型能够增量捕获复杂的交互,以进行更好的多跳推理。

1. Research Objective

1.建立了一个动态文档图模型,不依靠于规则或者共指消解。随着不断地迭代更新策略,模型可以更有效地融合文档信息。

2.充分比较其他模型,验证自己模型的优越性。

2. Background and Problems

其他模型都是通过规则和共指来建立模型,但是我们将文档图看成一个隐变量,通过模型自动学习。

我们进一步开发了迭代细化策略,使我们的模型能够基于上次迭代动态构建潜在结构,从而使模型能够增量捕获复杂的交互,以进行更好的多跳推理。

3. Method

模型主要分为三个部分:节点表达、动态推理、关系分类。

3.1节点表达

3.1.1 文章编码

输入:一篇文章的每一条句子

方法:Bert或者BiLSTM

在这里插入图片描述

输出:每一个句子中的单词表达向量

3.1.2 节点抽取
总体模型:
在这里插入图片描述

分为三种类型的节点:实体节点,提及(mention)节点以及MDP(meta dependency paths元依赖路径)节点。

实体节点:指代它的mention的平均值

提及节点:根据不同的实体节点来定

MDP节点:MDP表示一个句子中所有提及的最短依赖路径集,在MDP元依赖路径中,引用和单词的表示分别被提取为提及节点和MDP节点。

3.2 动态推理

总体模型:

分为两个模块,分别是结构归纳模块和多跳推理模块。

结构归纳:使用矩阵树理论来学习文档图的隐表征。

对于两个节点i,j,通过前馈神经网络和transformer结构来学习两个节点之间的分数(边?)

在这里插入图片描述

然后计算该节点为根节点的概率:

在这里插入图片描述

接下来计算文档级图的每个依赖边的表示。对于有n个节点的图G,我们首先给图的边赋非负权

在这里插入图片描述

然后对于权值矩阵P进行拉普拉斯变换(目的是什么?)

在这里插入图片描述

最后得到A矩阵,A矩阵用来表示第i个和第j个节点之间依存边的边缘概率。

在这里插入图片描述

A可以理解为带权重的邻接矩阵。

多跳推理:

在文档图的隐表征中进行推理,并且基于信息融合机制对节点进行更新。利用GCN原理进行多条推理。

在这里插入图片描述

除此之外,LSR还使用了多层图网络密集连接,以便在大型文档级图上捕获更多的结构信息。在密集连接的帮助下,能够训练一个更深层次的模型,捕捉更丰富的局部和非局部信息,以学习更好的图形表示。

为了能够推断出超出简单父子关系的更丰富的结构信息,使用N个动态推理块来多次归纳文档级结构。通过与更丰富的非本地信息的交互,结构变得更加细化,归纳模块能够生成更合理的结构。

4.3 关系分类

在这里插入图片描述

4. Experiment

1.主要结果

在DocRe上的结果,最好是bert+LSR为56.97%

在这里插入图片描述

在CDR的结果:

不如SOTA好,文章解释说是因为在生物领域上,用Spacy获取MDP节点的效果不好。在没有MDP节点的方法中,效果很好。

在这里插入图片描述

2.与其他基于规则的模型如:EOG,QAGCN,基于注意力机制的模型:AGGCN做对比,验证隐模型的重要性。

3.验证refinement的有效性
每次都去掉一个组件的消融实验。
在这里插入图片描述

5. Conclusion

为了在文档级关系抽取任务中更好地进行推理,我们引入了一种新的潜在结构精化(LSR)模型。与以前依赖语法树、共同引用或启发式的方法不同,LSR动态地学习文档级结构,并以端到端的方式进行预测。今后的工作有多种途径。一个可能的方向是扩展节点构造的结构归纳范围,而不依赖于外部解析器。
此处所说的外部解析器指的是MDP节点,文章采用Spacy包来构造。所以作者希望日后的工作能有其他构造文档图的方法。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值