-
Faster R-CNN(2015):
- 特点:两阶段检测器,包含Region Proposal Network (RPN)生成候选区域,Fast R-CNN进行分类和回归。利用深度特征进行目标检测,精确但计算成本较高。
- 适用场景:对检测精度要求较高,计算资源相对充足的场景,如高清图像分析、视频监控、遥感图像检测等。
-
SSD(2016):
- 特点:一阶段检测器,多尺度特征图上直接预测边界框和类别,速度快且精度适中。对小目标检测性能一般。
- 适用场景:需要快速响应且对整体检测精度有一定要求的场景,如智能安防、工业自动化、无人机监测等。
-
YOLO(2016):
- 特点:一阶段检测器,将目标检测视为回归问题,直接从全图预测边界框和类别。速度快,实时性强,但对小目标和密集目标的检测精度可能较低。
- 适用场景:对实时性要求高、计算资源有限的场景,如实时视频流分析、移动设备上的目标检测、自动驾驶实时感知等。
-
YOLOv2(2017):
- 特点:在YOLO基础上进行了多项改进,包括使用Darknet-19作为主干网络、引入批量归一化、使用Anchor Boxes改进边界框预测、使用多尺度预测等,提高了检测精度和速度。
- 适用场景:与YOLO类似&
12-25
3341

12-01
1万+

12-30
1900

10-13
1452

02-09
4508

03-24