YOLOv8 简介

YOLOv8 是 YOLO 系列的最新版本,在 2023 年由 Ultralytics(YOLO 的创造者)发布,是性能最佳的目标检测器之一,被视为对现有 YOLO 变体(如 YOLO v5 和 YOLOX)的改进。 

YOLOv8 支持全方位的视觉 AI 任务,包括检测分割姿态估计跟踪分类。这种多功能性使用户能够在各种应用和领域中利用 YOLOv8 的功能。

一、关键特性如下:

改进的准确性:YOLOv8 预计将在目标检测方面提供比其前代版本更高的准确性。这种改进可以带来更加精确和可靠的检测结果。

更高的速度和效率:YOLOv8 可能进行了优化,改进了对实时应用和有限计算资源的支持,使其能够在保持高准确性的同时实现更快的处理速度。这对于实时应用或计算资源有限的场景至关重要。

先进的骨干网络:YOLOv8 会采用更先进的骨干网络架构,如 Darknet-53 或类似架构,从而能够进行更好的特征提取和表示。

增强的目标分类:YOLOv8 在目标分类能力上进行了改进,使得检测到的目标能够进行更准确和详细的分类。

  • 优势:

    • 改进了对象分类能力
    • 更适合实时应用和边缘设备
    • 比 YOLOX 更快更准确

二、模型的大小(Size)和准确性(Accuracy):

yolov8n:Nano 预训练 Yolov8 模型,优化速度和效率。
yolov8s:Small 预训练 Yolov8 模型,平衡了速度和准确性,适用于需要实时性能和良好检测质量的应用。
yolov8m:Medium 预训练 Yolov8 模型,以适度的计算需求提供更高的准确性。
yolov8l:Large 预训练 Yolov8 模型,优先考虑高端系统的最大检测准确性,但计算强度较大。
yolov8x:Extra Large Yolov8 模型,是最准确的,但需要大量的计算资源,适合优先考虑检测性能的高端系统。

Yolov8 是 Yolo 系列模型的最新王者,各种指标全面超越现有对象检测与实例分割模型,借鉴了Yolov5、Yolov6、YoloX 等模型的设计优点,在全面提升改进 Yolov5 模型结构的基础上实现,同时保持了 Yolov5 工程化简洁易用的优势。


在这里插入图片描述

下表所示是基于 COCO Val 2017 数据集测试 Yolov8 的 mAP、参数量和 FLOPs 结果:

 三、YOLOv8 网络结构:

Yolov8模型网络结构图如下图所示。

在这里插入图片描述

四、YOLOv8 导出格式:

下表列出了可用的 Yolov8 导出格式:

Formatformat ArgumentModelMetadataArguments
PyTorch-yolov8n.pt-
TorchScripttorchscriptyolov8n.torchscriptimgsz, optimize, batch
ONNXonnxyolov8n.onnximgsz, half, dynamic, simplify, opset, batch
OpenVINOopenvinoyolov8n_openvino_model/imgsz, half, int8, batch
TensorRTengineyolov8n.engineimgsz, half, dynamic, simplify, workspace, int8, batch
CoreMLcoremlyolov8n.mlpackageimgsz, half, int8, nms, batch
TF SavedModelsaved_modelyolov8n_saved_model/imgsz, keras, int8, batch
TF GraphDefpbyolov8n.pbimgsz, batch
TF Litetfliteyolov8n.tfliteimgsz, half, int8, batch
TF Edge TPUedgetpuyolov8n_edgetpu.tfliteimgsz, batch
TF.jstfjsyolov8n_web_model/imgsz, half, int8, batch
PaddlePaddlepaddleyolov8n_paddle_model/imgsz, batch
NCNNncnnyolov8n_ncnn_model/imgsz, half, batch

                                                                                         老徐,2024/5/23

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值