1,本文介绍
GAM(Global Attention Mechanism)旨在改进传统注意力机制的不足,特别是在通道和空间维度上的信息保留问题。它通过顺序的通道-空间注意力机制来解决这些问题。以下是GAM的关键设计和实现细节:
-
通道注意力子模块:
- 3D排列:使用3D排列来在三个维度上保留信息,这种方法有助于捕捉更多维度的特征。
- 两层MLP:通过一个两层的多层感知机(MLP)增强跨维度的通道-空间依赖性,提升了模型对复杂特征的学习能力。
-
空间注意力子模块:
- 两个卷积层:采用两个卷积层融合空间信息,增强空间特征的学习,而不是使用最大池化操作,避免了可能导致信息损失的操作。
- 分组卷积与通道混洗:通过分组卷积和通道混洗,GAM在ResNet50中避免了显著的参数增加,这有助于减少计算开销和内存占用。
-
性能提升:
- 在不同网络架构上的应用:GAM在多种神经网络架构上都展示了稳定的性能提升,尤其在ResNet18上,GAM在参数更少的情况下展现了比ABN(Adaptive Bottleneck Network)更好的性能和效率。
GAM通过这些设计增强了对全局信息的捕捉能力,并在保持高效性的同时,显著提高了模型的表现。
以下为GAM模型结构图
关于GAM的详细介绍可以看论文:https://arxiv.org/pdf/2112.05561v1.pdf
本文将讲解如何将GAM融合进yolov8
话不多说,上代