爆改YOLOv8 | yolov8添加GAM注意力机制

1,本文介绍

GAM(Global Attention Mechanism)旨在改进传统注意力机制的不足,特别是在通道和空间维度上的信息保留问题。它通过顺序的通道-空间注意力机制来解决这些问题。以下是GAM的关键设计和实现细节:

  1. 通道注意力子模块

    • 3D排列:使用3D排列来在三个维度上保留信息,这种方法有助于捕捉更多维度的特征。
    • 两层MLP:通过一个两层的多层感知机(MLP)增强跨维度的通道-空间依赖性,提升了模型对复杂特征的学习能力。
  2. 空间注意力子模块

    • 两个卷积层:采用两个卷积层融合空间信息,增强空间特征的学习,而不是使用最大池化操作,避免了可能导致信息损失的操作。
    • 分组卷积与通道混洗:通过分组卷积和通道混洗,GAM在ResNet50中避免了显著的参数增加,这有助于减少计算开销和内存占用。
  3. 性能提升

    • 在不同网络架构上的应用:GAM在多种神经网络架构上都展示了稳定的性能提升,尤其在ResNet18上,GAM在参数更少的情况下展现了比ABN(Adaptive Bottleneck Network)更好的性能和效率。

GAM通过这些设计增强了对全局信息的捕捉能力,并在保持高效性的同时,显著提高了模型的表现。

以下为GAM模型结构图

关于GAM的详细介绍可以看论文:https://arxiv.org/pdf/2112.05561v1.pdf

本文将讲解如何将GAM融合进yolov8

话不多说,上代

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值