👑 YOLOv8改进有效系列目录 👑
专栏视频介绍:包括专栏介绍、得到的项目文件、模型二次创新、权重文件的使用问题,点击即可跳转。
前言
Hello,各位读者们好
- 本专栏自开设两个月以来已经更新改进教程170余篇其中包含C2f、主干、检测头、注意力机制、Neck多种结构上创新,也有损失函数和一些细节点上的创新。
- 同时本人一些讲解视频和包含我所有创新的YOLOv8文档并不能在CSDN上传(所有的创新点都经过我的测试是可用的,得到该文件之后大家可以随意组合使用),所以会建立群的形式在内上传我的文件和视频我也会在群内不定期和大家交流回答大家问题,同时定期会更新一些文章的创新点(经过我融合测试后的,先到先得)。
专栏介绍
- 本专栏持续更新网络上的所有前沿文章,也包含过去的所有改进机制(大家有感兴趣的机制都可以私聊我我会给大家更新),过去的改进机制并不一定就比新的机制效果差,同时我也阅读了很多网络上的专栏,发现大家在检测头方面的更新都很少(原因不得而知),所以本专栏包含20+的检测头创新(检测头的涨点效果都十分高远远大于其它机制)。
- 专栏会一直持续更新,在新的一年里每周更新3-10篇创新机制,持续复习最新的文章内容,订阅了本专栏之后,寻找和创新的工作我来,解放大家的70%的时间,文章发到手软。
- 本专栏后期还会更新一些YOLO方面关于实习和工作的内容,一些面试时可能有关YOLO系列的面试问题,让我们大家一起剑指图像算法工程师的岗位,所以想要和我一起学YOLO的读者欢迎订阅本专栏。
目前专栏改进机制:180种(全网最全)| 最新更新时间2025/3/8 | 本周更新5篇
购买专栏之后(可获得):完整项目文件,所有文章内容均可观看,视频讲解,同时享受千人订阅答疑群聊大家互相讨论,分享经验,购买专栏可开发票!
下面是大家购买专栏进群内能够获得的文件部分文件截图(CSDN上提供完整文件的本专栏为独一份),这些代码我已经全部配置好并注册在模型内大家只需要运行yaml文件即可,同时我总结了接近170+份的yaml文件组合供大家使用(群内有我的录制的讲解视频,教大家如何去修改和融合模型),同时大家也可以自己进行组合,估计组合起来共有上千种,总有一种适合你的数据集,让大家成功写出论文。
拥有这个文件YOLOv8你就可以一网打尽,文件均已注册完毕,只许动手点击运行yaml文件即可,非常适合小白。
本专栏平均质量分97,在CSDN改进机制大于170种以上的专栏为独一份,充分说明本专栏的质量。
本专栏的改进内容适用于YOLOv8的分类、检测、分割、追踪、关键点、OBB检测。
全网首家文件支持OBB检测!
💡欢迎大家订阅我的专栏一起学习YOLO💡
专栏购买链接-> 点击即可跳转购买专栏~
YOLOv8改进有效系列目录(持续更新)
项目环境如下
- 解释器:Python:3.9.7
- 框架:Pytorch:1.12.1
- 系统:Windows11
- IDEA:Pycharm
👑试读文章👑
- (一):详解YOLOv8网络结构/环境搭建/数据集获取/训练/推理/验证/导出/部署
- (二):YOLOv8改进 | Conv篇 | AKConv轻量级架构下的高效检测(既轻量又提点)
- (三):YOLOv8 | 代码逐行解析(一) | 项目目录构造分析
- (四):YOLOv8性能评估指标->mAP、Precision、Recall、FPS、IoU
- (五):YOLOv8改进 | 注意力篇 | 一文带你改进GAM、CBAM、CA、ECA等通道注意力机制和多头注意力机制
👑基础篇👑
- (一):详解YOLOv8网络结构/环境搭建/数据集获取/训练/推理/验证/导出/部署
- (二): 利用恒源云在云端租用GPU服务器训练YOLOv8模型(包括Linux系统命令讲解)
- (三):YOLOv8改进 | 如何在网络结构中添加注意力机制、C2f、卷积、Neck、检测头
- (四):汇总利用YOLO8训练遇到的报错和解决方案(包含训练过程中验证阶段报错、精度报错、损失为Nan、不打印GFLOPs)
👑入门篇 👑
此篇内容为专为小白打造五篇文章共8w余字全部为我个人总结!
- (一):YOLOv8 | 代码逐行解析(一) | 项目目录构造分析(带你完整的走遍整个流程)
- (二):YOLOv8 | 代码逐行解析(二) | 从yaml文件到模型定义(代码逐行注释,小白必看)
- (三):YOLOv8 | 代码逐行解析(三) | YOLO中的Mosaic增强详解(带你深度理解你的数据集是以如何形式输入给模型)
- (四):YOLOv8 | 代码逐行解析(四) | YOLOv8中从检测头到损失函数计算的详解,小白必看(上)
- (五):YOLOv8 | 代码逐行解析(五) | YOLOv8中从检测头到损失函数计算的详解,小白必看(下)
👑数据集篇 👑
- (一):超详细教程YoloV8官方推荐免费数据集网站Roboflow一键导出Voc、COCO、Yolo、Csv等格式
- (二):YOLOv8官方推荐免费数据集网站Roboflow数据预处理教程
- (三):YOLOv8官方推荐免费数据集网站Roboflow数据增强教程
👑论文写作篇👑
- (一):YOLOv8性能评估指标->mAP、Precision、Recall、FPS、IoU
- (二):YOLOv8训练损失、mAP画图功能 | 支持多结果对比,多结果在一个图片(科研必备)
- (三):YOLOv8可视化热力图 | 支持自定义模型、置信度选择等功能 (科研必备)
- (四):YOLOv8改进 | 可视化热力图 | 支持YOLOv8最新版本密度热力图,和视频热力图
- (五):YOLOv8改进 | 基础篇 | 计算训练好权重文件对应的FPS、推理每张图片的平均时间(科研必备)
👑卷积篇👑
- (一):YOLOv8改进 | Conv篇 | 轻量级下采样方法ContextGuided(大幅度涨点)
- (二):YOLOv8改进 | Conv篇 | DiverseBranchBlock多元分支模块(有效涨点)
- (三):YOLOv8改进 | Conv篇 | SPD-Conv空间深度转换卷积(高效空间编码技术)
- (四):YOLOv8改进 | Conv篇 | AKConv轻量级架构下的高效检测(既轻量又提点)
- (五):YOLOv8改进 | Conv篇 | SCConv空间和通道重构卷积(精细化检测,轻量又提点)
- (六):YOLOv8改进 | Conv篇 | 通过RFAConv重塑空间注意力(深度学习的前沿突破)
- (七):YOLOv8改进 | Conv篇 | DWRSeg扩张式残差助力小目标检测
- (八):YOLOv8改进 | Conv篇 | SAConv可切换空洞卷积(附修改后的C2f+Bottleneck)
- (九):YOLOv8改进 | Conv篇 | ODConv卷积助力极限涨
- (十):YOLOv8改进 | Conv篇 | 多位置替换可变形卷积(DCNv1、DCNv2、DCNv3)
- (十一):YOLOv8改进 | Conv篇 |手把手教你添加动态蛇形卷积(Dynamic Snake Conv)
- (十二):YOLOv8改进 | Conv篇 | 利用YOLO-MS的MSBlock轻量化网络结构(既轻量又长点)
- (十三):YOLOv8改进 | Conv篇 | 在线重参数化卷积OREPA助力二次创新(提高推理速度 + FPS)
- (十四):YOLOv8改进 | Conv篇 | 2024.1月最新成果可变形卷积DCNv4(全网独家首发)
- (十五):YOLOv8改进 | Conv篇 | 结合Dual思想利用HetConv创新一种全新轻量化结构CSPHet(参数量下降70W)
- (十六):YOLOv8改进 | Conv篇 | 利用DualConv二次创新C2f提出一种轻量化结构(轻量化创新)
- (十七):YOLOv8改进 | Conv篇 | 利用轻量化PartialConv提出一种全新的结构CSPPC (参数量下降约100W)
- (十八):YOLOv8改进 | Conv篇 | 利用FasterBlock二次创新C2f提出一种全新的结构(全网独家首发,参数量下降70W)
- (十九):YOLOv8改进 | Conv篇 | 利用YOLOv9的GELAN模块替换C2f结构(附轻量化版本 + 高效涨点版本 + 结构图)
- (二十):YOLOv8改进 | Conv篇 | 全新的SOATA轻量化下采样操作ADown(参数量下降百分之二十,附手撕结构图)
- (二十一):YOLOv8改进 | Conv篇 | CVPR2024最新DynamicConv替换下采样(包含C2f创新改进,解决低FLOPs陷阱)
- (二十二):YOLOv8改进 | Conv篇 | 利用CVPR2024-DynamicConv提出的GhostModule改进C2f(全网独家首发)
- (二十三):YOLOv8改进 | Conv篇 | 利用 Haar 小波的下采样HWD替换传统下采样(改变YOLO传统的Conv下采样)
- (二十四):YOLOv8改进 | Conv篇 | 利用YOLOv10提出的SCDown魔改YOLOv8进行下采样(附代码 + 结构图 + 添加教程)
- (二十五):YOLOv8改进 | Conv篇 | 利用YOLOv10提出的C2fUIB魔改YOLOv8(附代码 + 完整修改教程)
- (二十六):YOLOv8改进 | Conv篇 | 利用Mamba的MLLABLock二次创新C2f(全网独家首发)
- (二十七):YOLOv8改进 | Conv篇 | 最新轻量化自适应提取模块LAE助力边缘设备部署计算(附代码 + 修改教程 + 运行教程)
- (二十八):YOLOv8改进 | Conv篇 | 利用ModulatedDeformConv优化YOLO下采样(降低参数 + 网络层数 + 计算量)
- (二十九):YOLOv8改进 | Conv篇 | 2024最新ECCV最新大感受野的小波卷积WTConv创新C2f(附代码 + 修改教程)
- (三十):YOLOv8改进 | Conv篇 | 2024最新Kolmogorov-Arnold网络架构下的KANConv(包含九种不同类型激活函数的KANConv2d)
👑注意力篇👑
- (一):YOLOv8改进 | 注意力篇 | ACmix自注意力与卷积混合模型(提高FPS+检测效率)
- (二):YOLOv8改进 | 注意力篇 | MSDA多尺度空洞注意力(附多位置添加教程)
- (三):YOLOv8改进 | 注意力篇 | HAttention超分辨率重建助力小目标检测 (全网首发)
- (四):YOLOv8改进 | 注意力篇 | RCS-OSA替换C2f暴力涨点(减少通道的空间对象注意力)
- (五):YOLOv8改进 | 注意力篇 | TripletAttention三重注意力机制
- (六):YOLOv8改进 | 注意力篇 | Deformable-LKA可变形大核注意力(涨点幅度超高)
- (七):YOLOv8改进 | 注意力篇 | LSKAttention大核注意力机制助力极限涨点
- (八):YOLOv8改进 | 注意力篇 | FocusedLinearAttention实现有效涨点
- (九):YOLOv8改进 | 注意力篇 | DAttention (DAT)注意力机制实现极限涨点
- (十):YOLOv8改进 | 注意力篇 | 适合多种检测场景的BiFormer注意力机制
- (十一):YOLOv8改进 | 注意力篇 | iRMB倒置残差块注意力机制(轻量化注意力机制)
- (十二):YOLOv8改进 | 注意力篇 | EMAttention注意力机制(附多个可添加位置)
- (十三):YOLOv8改进 | 注意力篇 | MLCA混合局部通道注意力(轻量化注意力机制)
- (十四):YOLOv8改进 | 注意力篇 | 实现级联群体注意力机制CGAttention (全网首发)
- (十五):YOLOv8改进 | 注意力篇 | 利用YOLO-Face提出的SEAM注意力机制优化物体遮挡检测(附代码 + 修改教程)
- (十六):YOLOv8改进 | 注意力篇 | 一文带你改进GAM、CBAM、CA、ECA等通道注意力机制和多头注意力机制
- (十七):YOLOv8改进 | 注意力篇 | 利用YOLOv10提出的PSA注意力机制助力YOLOv8有效涨点(附代码 + 详细修改教程)
- (十八):YOLOv8改进 | 注意力篇 | 结合Mamba注意力机制MLLA助力YOLOv8有效涨点(全网独家首发)
- (十九):YOLOv8改进 | 注意力篇 | 2024最新的空间和通道协同注意力模块SCSA改进yolov8有校涨点(含二次创新C2f)
👑主干篇👑
(主干篇即将重构全系列支持yolov8n、s、m、l、x二次轻量化)
- (一):YOLOv8改进 | 主干篇 | RevColV1可逆列网络(特征解耦助力小目标检测)
- (二):YOLOv8改进 | 主干篇 | 利用SENetV1改进网络结构 (ILSVRC冠军得主)
- (三):YOLOv8改进 | 主干篇 | 利用SENetV2改进网络结构 (全网首发改进)
- (四):YOLOv8改进 | 主干篇 | 利用MobileNetV3替换Backbone(轻量化网络结构)
- (五):YOLOv8改进 | 主干篇 | 利用MobileNetV2替换Backbone(轻量化网络结构)
- (六):YOLOv8改进 | 主干篇 | 利用MobileNetV1替换Backbone(轻量化网络结构)
- (七):YOLOv8改进 | 主干篇 | 轻量级网络ShuffleNetV1(附代码+修改教程)
- (八):YOLOv8改进 | 主干篇 | 轻量级网络ShuffleNetV2(附代码+修改教程)
- (九):YOLOv8改进 | 主干篇 | 华为最新VanillaNet主干替换Backbone实现大幅度长点
- (十):YOLOv8改进 | 主干篇 | RepViT从视觉变换器(ViT)的视角重新审视CNN
- (十一):YOLOv8改进 | 主干篇 | 替换LSKNet遥感目标检测主干 (附代码+结构讲解)
- (十二):YOLOv8改进 | 主干篇 | 利用轻量化卷积优化PP-HGNetV2改进主干(独家创新)
- (十三):YOLOv8改进 | 主干篇 | 利用RT-DETR特征提取网络PPHGNetV2改进YOLOv8
- (十四):YOLOv8改进 | 主干篇 | SwinTransformer替换Backbone(附代码 + 原理介绍)
- (十五):YOLOv8改进 | 主干篇 | EfficientViT替换Backbone(高效的视觉变换网络)
- (十六):YOLOv8改进 | 主干篇 | FasterNeT跑起来的主干网络( 提高FPS和检测效率)
- (十七):YOLOv8改进 | 主干篇 | EfficientNetV1均衡缩放网络改进特征提取层
- (十八):YOLOv8改进 | 主干篇 | EfficientNetV2均衡缩放网络改进特征提取层
- (十九):YOLOv8改进 | 主干篇 | CSWinTransformer交叉形窗口网络
- (二十):YOLOv8改进 | 主干篇 | ConvNeXtV2全卷积掩码自编码器网络
- (二十一):YOLOv8改进 | 主干篇 | 12月份最新成果TransNeXt特征提取网络(全网首发)
- (二十二):YOLOv8改进 | 主干篇 | 华为移动端模型Ghostnetv1改进特征提取网络
- (二十三):YOLOv8改进 | 主干篇 | 华为移动端模型Ghostnetv2改进特征提取网络
- (二十四):YOLOv8改进 | 主干篇 | 12月最新成果UniRepLknet特征提取网络
- (二十五):YOLOv8改进 | 主干篇 | EfficientViT高效的特征提取网络完爆MobileNet系列(轻量化网络结构)
- (二十六):YOLOv8改进 | 主干篇 | 反向残差块网络EMO一种轻量级的CNN架构(附完整代码 + 修改教程)
- (二十七):YOLOv8改进 | 主干篇 | ResNet18、34、50、101改进特征提取网络(附代码 + 详细修改教程)
- (二十八):YOLOv8改进 | 主干篇 | 利用图像分割网络UNetV2改善图像分割检测性能(全网独家首发)
- (二十九):YOLOv8改进 | 主干篇 | 修复官方去除掉PP-HGNetV2的通道缩放功能(轻量又涨点,全网独家整理)
- (三十):YOLOv8改进 | 主干篇 | 轻量化网络MobileViTv1改进YOLOv8助力轻量化模型
- (三十一):YOLOv8改进 | 主干篇 | 轻量化网络MobileViTv2改进YOLOv8助力轻量化模型
- (三十二):YOLOv8改进 | 主干篇 | 2024.5全新的移动端网络MobileNetV4改进YOLOv8(含MobileNetV4全部版本改进)
- (三十三):YOLOv8改进 | 主干篇 | 2024最新重写星辰StarNet助力yolov8有效涨点(yolov8全系列轻量化)
👑特殊场景检测篇👑
(去雾检测比较通用可以用于其它几种检测场景,也适用于一些检测物体比较模糊场景)
低照度/暗光:
- YOLOv8改进 | 低照度增强网络PE-YOLO改进主干(改进暗光条件下的物体检测模型)
- YOLOv8改进 | 低照度增强网络Retinexformer改进黑夜目标检测 (2023.11最新成果,独家首发)
- YOLOv8改进 | 低照度图像增强网络SCINet改进黑暗目标检测(全网独家首发)
- YOLOv8改进 | 轻量级的低照度图像增强网络IAT改进YOLOv8暗光检测(全网独家首发)
- YOLOv8改进 | 门控可微分图像处理GDIP模块改善物体低照度检测检测(适用于图片不清晰等一切场景,全网独家首发)
- YOLOv8改进 | 低照度检测 | 2024最新改进CPA-Enhancer链式思考网络(适用低照度、图像去雾、雨天、雪天)
超分辨率:
- YOLOv8改进 | 添加HAttention(HAT)超分辨率重建助力小目标检测 (全网首发,超分辨率检测)
- YOLOv8改进 | 独创RFAHead检测头超分辨率重构检测头(适用Pose、分割、目标检测)
- YOLOv8改进 | 通过RFAConv重塑空间注意力(深度学习的前沿突破)
- YOLOv8改进 | 自研超分辨率检测头HATHead助力超分辨率检测(混合注意力变换器检测头)
去雾检测:
- YOLOv8改进 | 利用图像去雾网络UnfogNet辅助YOLOv8进行图像去雾检测(全网独家首发)
- YOLOv8改进 | 利用图像去雾网络AOD-PONO-Net网络增改进图像物体检测
- YOLOv8改进 | 特征融合注意网络FFA-Net增强YOLOv8对于模糊图片检测能力(北大和北航联合提出)
- YOLOv8改进 | 门控可微分图像处理GDIP模块改善物体低照度检测检测(适用于图片不清晰等一切场景,全网独家首发)
- YOLOv8改进 | MB-TaylorFormer改善YOLOv8高分辨率和图像去雾检测(ICCV,全网独家首发)
- YOLOv8改进 | 去雾检测 | 2024最新改进CPA-Enhancer链式思考网络(适用低照度、图像去雾、雨天、雪天)
遮挡检测:
图像修复:
图像去噪:
遮挡检测:
水下检测:
👑检测头篇👑
- (一):YOLOv8改进 | 检测头篇 | 利用AFPN改进检测头适配YOLOv8版(全网独家创新)
- (二):YOLOv8改进 | 检测头篇 | 给v8换个RT-DETR的检测头(重塑目标检测前沿技术)
- (三):YOLOv8改进 | 检测头篇 | 增加小目标检测层利用AFPN改进检测头
- (四):YOLOv8改进 | 检测头篇 | ASFF改进YOLOv8检测头(全网独家改进)
- (五):YOLOv8改进 | 检测头篇 | DynamicHead原论文一比一复现 (不同于网上版本)
- (六):YOLOv8改进 | 检测头篇 | FRMHead效果秒杀v8和RT-DETR检测头(全网独家创新)
- (七):YOLOv8改进 | 检测头篇 | 利用DynamicHead增加辅助检测头针对性检测(四头版本)
- (八):YOLOv8改进 | 检测头篇 | 在Dyhead检测头的基础上替换DCNv3 (全网独家首发)
- (九):YOLOv8改进 | 检测头篇 | 利用DySnakeConv改进检测头专用于分割的检测头(全网独家首发,Seg)
- (十):YOLOv8改进 | 检测头篇 | 利用DBB重参数化模块魔改检测头实现暴力涨点 (支持检测、分割、关键点检测)
- (十一):YOLOv8改进 | 检测头篇 | 辅助特征融合检测头FASFFHead (增加额外目标检测层,独家创新)
- (十二):YOLOv8改进 | 检测头篇 | 重参数化检测头RepHead解决困难样本检测(全网独家首发)
- (十三):YOLOv8改进 | 检测头篇 | 独创RFAHead检测头超分辨率重构检测头(适用Pose、分割、目标检测)
- (十四):YOLOv8改进 | 检测头篇 | 2024最新HyCTAS模型提出SAttention(自研轻量化检测头 -> 适用分割、Pose、目标检测)
- (十五):YOLOv8改进 | 检测头篇 | 自研超分辨率检测头HATHead助力超分辨率检测(混合注意力变换器检测头)
- (十六):YOLOv8改进 | 检测头篇 | 独家创新自适应性DWConv改进v8检测头独创FADWCHead(全网独家首发创新)
👑Neck篇👑
- (一):YOLOv8改进 | Neck篇 | 轻量级跨尺度特征融合模块CCFM(附yaml文件+添加教程)
- (二):YOLOv8改进 | Neck篇 | 利用RepGFPN改进特征融合层(附yaml文件+添加教程)
- (三):YOLOv8改进 | Neck篇 | BiFPN双向特征金字塔网络(附yaml文件+代码)
- (四):YOLOv8改进 | Neck篇 | Slim-Neck替换特征融合层实现超级涨点 (又轻量又超级涨点)
- (五):YOLOv8改进 | Neck篇 | 利用GoldYOLO改进YOLOv8让小目标检测无所遁形
- (六):YOLOv8改进 | Neck篇 | 利用ASF-YOLO改进特征融合层(适用于分割和目标检测)
- (七):YOLOv8改进 | Neck篇 | 2024.1最新MFDS-TR的HS-FPN改进特征融合层(降低100W参数,全网独家首发)
- (八):YOLOv8改进 | Neck篇 | 当SDI碰上BiFPN形成全新的特征金字塔网络(全网独家创新)
- (九):YOLOv8改进 | Neck篇 | 结合SDI和ASF-YOLO形成全新的特征金字塔网络(分割高效涨点)
- (十):YOLOv8改进 | Neck篇 | 独创HFPN利用分层特征融合块HFFB模块融合多层次特征改进yolov8(全网独家创新)
👑损失函数篇👑
- (一):YOLOv8改进 | 损失函数篇 | MPDIoU、InnerMPDIoU助力细节涨点
- (二):YOLOv8改进 | 损失函数篇 | EIoU、WIoU、DIoU、FocusIoU等二十余种损失函数
- (三):YOLOv8改进 | 损失函数篇 | InnerIoU、InnerWIoU、FocusIoU等损失函数
- (四):YOLOv8改进 | 损失函数篇 | 12月最新Shape-IoU考虑边框形状与尺度度量的损失函数
- (五):YOLOv8改进 | 损失函数篇 | SlideLoss、FocalLoss分类损失函数助力细节涨点(全网最全)
- (六):YOLOv8改进 | 损失函数篇 | QualityFocalLoss改进分类损失(提高分类准确率)
- (七):YOLOv8改进 | 损失函数篇 | 更加聚焦的边界框损失Focaler-IoU、InnerFocalerIoU(二次创新)
- (八):YOLOv8改进 | 损失函数篇 | 高质量的目标检测边界框回归损失Unified-IoU、FocalUIoU、FocalInvUIoU(设置动态epoch参数)
👑SPPF篇👑
- (一):YOLOv8改进 | SPPF篇 | 将AIFI模块和Conv模块结合替换SPPF(独家改进)
- (二):YOLOv8改进 | SPPF篇 | FocalModulation替换SPPF(精度更高空间金字塔池化)
- (三):YOLOv8改进 | SPPF篇 | 利用YOLOv9最新的SPPELAN模块改进SPPF(全网独家创新)
👑细节创新篇👑
- (一): YOLOv8改进 | 细节创新篇 | iAFF迭代注意力特征融合助力多目标细节涨点
- (二):YOLOv8改进 | 细节涨点篇 | CARAFE提高精度的上采样方法(助力细节长点)
- (三):YOLOv8改进 | 细节涨点篇 | UNetv2提出的一种SDI多层次特征融合模块(分割高效涨点)
- (四):YOLOv8改进 | 细节涨点篇 | DySample一种超级轻量的动态上采样算子(效果完爆CARAFE)
- (五):YOLOv8改进 | 细节涨点篇 | 利用YOLOv8自带的RayTune进行超参数调优
- (六):YOLOv8改进 | 细节创新篇 | 最新双时相特征聚合模块BFAM助力yolov8有效涨点(二次创新C2f全网独家首发)
- (七):YOLOv8改进 | 细节创新篇 | 最新动态特征融合模块DFF二次创新C2f助力yolov8有效涨点(全网独家首发)
👑融合改进篇👑
- (一):YOLOv8改进 | 融合改进篇 | BiFPN+ RepViT(教你如何融合改进机制) | 独家首发
- (二):YOLOv8改进 | 融合改进篇 | Damo-YOLO配合Dyhead检测头突破极限涨点 | 独家首发
- (三):YOLOv8改进 | 融合改进篇 | 轻量化CCFM + SENetv2进行融合改进涨点 (独家首发)
- (四):YOLOv8改进 | 融合改进篇 | CCFM + Dyhead完美融合突破极限涨点 (全网独家首发)
- (五):YOLOv8改进 | 融合改进篇 | 华为VanillaNet + BiFPN突破涨点极限(独家首发)
👑独家创新篇👑
- (一):YOLOv8改进 | 独家创新篇 | 结合iRMB和EMA形成全新的iEMA机制(全网独家创新)
- (二):YOLOv8改进 | 独家创新篇 | 在Dyhead检测头的基础上替换DCNv3 (全网独家首发)
- (三):YOLOv8改进 | 独家创新篇 | 利用DBB重参数化模块魔改检测头实现暴力涨点 (支持检测、分割、关键点检测)
- (四):YOLOv8改进 | 独家创新篇 | 利用DualConv二次创新C2f提出一种轻量化结构(轻量化创新)
- (五):YOLOv8改进 | 独家创新篇 | 结合Dual思想利用HetConv创新一种全新轻量化结构CSPHet(参数量下降70W)
- (六):YOLOv8改进 | 独家创新篇 | 利用轻量化PartialConv提出一种全新的结构CSPPC (参数量下降约100W)
- (七):YOLOv8改进 | 独家创新篇 | 当SDI碰上BiFPN形成全新的特征金字塔网络(全网独家创新)
- (八):YOLOv8改进 | 独家创新篇 | 结合SDI和ASF-YOLO形成全新的特征金字塔网络(分割高效涨点)
- (九):YOLOv8改进 | 独家创新篇 | 结合SOTA思想利用双主干网络改进YOLOv8(全网独家创新,最重磅的更新)
- (十):YOLOv8改进 | 独家创新篇 | 给YOLOv8增加辅助可逆分支结构(PGI)(全网独家创新,附视频讲解)
- (十一):YOLOv8改进 | 独家创新篇 | 利用DCNv3集合DLKA形成全新的注意力机制(全网独家创新)
- (十二):YOLOv8改进 | 独家创新篇 | 自研超分辨率检测头HATHead助力超分辨率检测(混合注意力变换器检测头)
- (十三):YOLOv8改进 | 独家创新篇 | 利用MobileNetV4的UIB模块二次创新C2f(全网独家首发)
👑进阶实战篇👑
- (一):YOLOv8改进 | 进阶实战篇 | 利用YOLOv8进行视频划定区域目标统计计数
- (二):YOLOv8改进 | 进阶实战篇 | 利用YOLOv8进行过线统计(可用于人 、车过线统计)
- (三):YOLOv8改进 | 进阶实战篇 | 利用辅助超推理算法SAHI推理让小目标无所谓遁形(支持视频和图片)
👑模型剪枝👑
待更新~
👑模型蒸馏👑
- (一):YOLOv8蒸馏 | 知识蒸馏 | 利用模型蒸馏改进YOLOv8进行无损涨点 | 离线蒸馏(附代码 + 完整文件 + 解析教程)
- (二):YOLOv8蒸馏 | 知识蒸馏 | 利用模型蒸馏改进YOLOv8进行无损涨点 | 在线蒸馏 (附代码 + 完整文件 + 解析教程)
- (三):YOLOv8蒸馏 | 知识蒸馏 | 利用模型蒸馏改进YOLOv8进行无损涨点 | MimicLoss(在线蒸馏 + 离线蒸馏)
- (四):YOLOv8蒸馏 | 知识蒸馏 | 利用模型蒸馏改进YOLOv8进行无损涨点 | MGDLoss(在线蒸馏 + 离线蒸馏)
- (五):YOLOv8蒸馏 | 知识蒸馏 | 利用模型蒸馏改进YOLOv8进行无损涨点 | CWDLoss(在线蒸馏 + 离线蒸馏)