EPR阳谬,Bell不等式和CHSH不等式

EPR阳谬由爱因斯坦等科学家提出,质疑量子力学的完备性,认为存在局域实在的隐变量理论。Bell不等式则指出,即便是局域实在理论也不能解释所有量子力学现象。CHSH不等式为实验验证提供了可能,而纠缠态的存在打破了这些不等式,揭示了量子力学的非局域性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

EPR阳谬,Bell不等式和CHSH不等式

在上个世纪上半叶,物理学获得了极大的发展,其中尤其以相对论和量子力学最为显著。但是,这了两种理论却不能很好的相融。尤其是量子力学,因为使用波函数去描述粒子,其在波恩诠释中被解释为了概率而非具有确定性的具有某个值,同时在描述多个粒子时出现了超距作用等令人匪夷所思的现象,而遭到了以爱因斯坦为首的一众科学家的反对。其中尤其是以Albert Einstein, Boris Podolsky 和 Nathan Rosen在《物理评论快报》(Physical Reviews Letters,PRL)上的一篇文章最为知名,《量子力学对客观实在的描述是完备的吗?》(Can Quantum-Mechanical Description of Physical Reality be Considered Complete?)并在这篇文章中把两种理论的矛盾问题指向了量子力学的不完备性。史称EPR阳谬。

在这篇文章中,他们首先做了如下的假设:1. 量子力学对于一些现象的解释是准确的。2. 超距作用不存在,这源于相对论的基本假设。并基于此,他们给出了当量子力学描述不止一个物体时会出现的自相矛盾。

假设存在两个粒子,他们的距离为a,他们的动量守恒且和为0. 根据量子力学的基本原理。构造如下的算符, Δ X = X ^ 1 − X ^ 2 \Delta X=\hat{X}_1-\hat{X}_2 ΔX=X^1X^2和算符 P ^ = P ^ 1 + P ^ 2 \hat{P}=\hat{P}_1+\hat{P}_2 P^=P^1+P^2. 由于这两个算符对易,因此具有共同的本征态。而这两个粒子就处于这个本征态上。
[ Δ X , P ^ ] = [ X ^ 1 , P ^ 1 ] − [ X ^ 2 , P ^ 2 ] = 0 Δ X ∣ φ ⟩ = a ∣ φ ⟩ P ^ ∣ φ ⟩ = 0 ∣ φ ⟩ [\Delta X, \hat{P}]=[\hat{X}_1,\hat{P}_1]-[\hat{X}_2,\hat{P}_2]=0\\ \Delta X |\varphi\rangle=a|\varphi\rangle\\ \hat{P}|\varphi\rangle=0|\varphi\rangle [ΔX,P^]=[X^1,P^1][X^2,P^2]=0ΔXφ=aφP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值