常用基础数学知识

常用不等式

1. 杨氏不等式(Young’s inequality)

  • 对任意实数 a , b > 0 a,b>0 a,b>0,有

    a ⋅ b ⩽ a p p + b q q a\cdot b \leqslant \frac{a^p}{p}+\frac{b^q}{q} abpap+qbq,其中 p > 1 p>1 p>1 1 p + 1 q = 1 \frac{1}{p}+\frac{1}{q}=1 p1+q1=1.

  • ϵ \epsilon ϵ的形式, ϵ > 0 \epsilon>0 ϵ>0,有

    a ⋅ b ⩽ ( ϵ 1 p a p p ) ( ϵ − q p b q q ) ⩽ ϵ a p p + ϵ − q p b q q a\cdot b \leqslant (\epsilon^{\frac{1}{p}}\frac{a^p}{p})(\epsilon^{-\frac{q}{p}}\frac{b^q}{q}) \leqslant \epsilon\frac{a^p}{p} + \epsilon^{-\frac{q}{p}} \frac{b^q}{q} ab(ϵp1pap)(ϵpqqbq)ϵpap+ϵpqqbq.

2. 杨氏不等式的变形

  • ± a ⋅ b ⩽ a 2 b 2 + 1 4 \pm a\cdot b \leqslant a^2b^2+\frac{1}{4} ±aba2b2+41

    ± 2 u v ⩽ u 2 + v 2 \pm 2uv \leqslant u^2+v^2 ±2uvu2+v2,令 u = a b , v = 1 2 u=ab, v=\frac{1}{2} u=ab,v=21

  • ± a ⋅ b ⩽ a 2 + 1 4 b 2 \pm a\cdot b\leqslant a^2+\frac{1}{4}b^2 ±aba2+41b2

    ± u v ⩽ 1 2 u 2 + 1 2 v 2 \pm uv \leqslant \frac{1}{2}u^2+\frac{1}{2}v^2 ±uv21u2+21v2,令 u = 2 a , v = 1 2 b u=\sqrt{2}a, v=\frac{1}{\sqrt{2}}b u=2 a,v=2 1b

  • a ⋅ b ⩽ ϵ 2 a 2 + 1 2 ϵ b 2 a \cdot b \leqslant \frac{\epsilon}{2}a^2+\frac{1}{2\epsilon}b^2 ab2ϵa2+2ϵ1b2

    ϵ \epsilon ϵ的杨氏不等式,取 p = q = 2 p=q=2 p=q=2

3. 均值不等式

  • 调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。

    调和平均数: H n = n ∑ i = 1 n 1 x i = n 1 x 1 + 1 x 2 + ⋯ + 1 x n H_n=\frac{n}{\sum_{i=1}^n\frac{1}{x_i}}=\frac{n}{\frac{1}{x_1}+\frac{1}{x_2}+\dots+\frac{1}{x_n}} Hn=i=1nxi1n=x11+x21++xn1n

    几何平均数: G n = ∏ i = 1 n x i n = x 1 x 2 … x n n G_n=\sqrt[n]{\prod_{i=1}^nx_i}=\sqrt[n]{x_1x_2\dots x_n} Gn=ni=1nxi =nx1x2xn ;

    算术平均数: A n = ∑ i = 1 n x i n = x 1 + x 2 + ⋯ + x n n A_n=\frac{\sum_{i=1}^nx_i}{n}=\frac{x_1+x_2+\dots+x_n}{n} An=ni=1nxi=nx1+x2++xn;

    平方平均数: Q n = ∑ i = 1 n x i 2 n = x 1 2 + x 2 2 + ⋯ + x n 2 n Q_n=\frac{\sqrt{\sum_{i=1}^nx_i^2}}{n}=\sqrt{\frac{x_1^2+x_2^2+\dots+x_n^2}{n}} Qn=ni=1nxi2 =nx12+x22++xn2 .

4. 均值定理:

  • f ( a + b ) = f ( a ) + b d f ( x ) d x ∣ x = x ⋆ f(a+b)=f(a)+b\frac{\mathrm{d}f(x)}{\mathrm{d}x}\big|_{x=x^\star} f(a+b)=f(a)+bdxdf(x) x=x

    其中, x ⋆ = λ ( a + b ) + ( 1 − λ ) a x^\star=\lambda(a+b)+(1-\lambda)a x=λ(a+b)+(1λ)a, λ ∈ ( 0 , 1 ) \lambda\in(0,1) λ(0,1).

5. 与 t a n h tanh tanh 有关的不等式

  • 对于任意 ϵ > 0 \epsilon>0 ϵ>0 x ∈ R x\in\mathbf{R} xR,有 0 ⩽ ∣ x ∣ − x t a n h ( x ϵ ) ⩽ κ ϵ 0 \leqslant \vert x\vert -x tanh(\frac{x}{\epsilon})\leqslant \kappa \epsilon 0xxtanh(ϵx)κϵ,其中 κ = 0.2785 \kappa=0.2785 κ=0.2785.

变限积分求导

  • d d x ∫ v ( x ) u ( x ) f ( x , t ) d t = f ( x , u ( x ) ) u ˙ ( x ) − f ( x , v ( x ) ) v ˙ ( x ) + ∫ v ( x ) u ( x ) ∂ f ( x , t ) ∂ x d t \frac{d}{dx}\int_{v(x)}^{u(x)}f(x,t)dt=f(x,u(x))\dot{u}(x)-f(x,v(x))\dot{v}(x)+\int_{v(x)}^{u(x)}\frac{\partial f(x,t)}{\partial x}dt dxdv(x)u(x)f(x,t)dt=f(x,u(x))u˙(x)f(x,v(x))v˙(x)+v(x)u(x)xf(x,t)dt.

矩阵的迹的性质

  • t r ( A x × ) = 1 2 t r ( x × ( A − A T ) ) = − x × ( A − A T ) ∨ tr(Ax^\times)=\frac{1}{2}tr(x^\times(A-A^T))=-x^\times(A-A^T)^\vee tr(Ax×)=21tr(x×(AAT))=x×(AAT),
    其中, A ∈ R 3 × 3 , x ∈ R 3 , x × = [ 0 − x 3 x 2 x 3 0 − x 1 − x 2 x 1 0 ] A\in R^{3\times3},x\in R^3,x^\times=\left[ \begin{array}{cc} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0\end{array}\right] AR3×3,xR3,x×= 0x3x2x30x1x2x10 , ∨ \vee 表示 × \times ×的逆运算。

  • x × A + A T x × = ( ( t r ( A ) I 3 × 3 − A ) x ) ∧ . x^\times A+A^Tx^\times=((tr(A)I_{3\times3}-A)x)^\land. x×A+ATx×=((tr(A)I3×3A)x).

  • 1
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值