A/B—【扩展欧几里得算法】

A/B

要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1)。

Input

数据的第一行是一个T,表示有T组数据。 
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。

Output

对应每组数据输出(A/B)%9973。

Sample Input

2
1000 53
87 123456789

Sample Output

7922
6060

问题链接https://vjudge.net/problem/HDU-1576

题解:扩展GCD应用,利用辗转相除法,解二元一次不定式.

/*求解 x,y 的方法的理解
我们不妨设 a>b。
1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;
2,ab<>0 时
设 ax1 +by1 =gcd(a,b);
bx2 +(a%b)y2 =gcd(b,a%b);
根据朴素欧几里德原理有 gcd(a,b)=gcd(b,a%b);
则:ax 1 +by1 =bx2 +(a%b)y2 ;
即:ax 1 +by1 =bx2 +(a-(a/b)*b)y2 =ay2 +bx2 -(a/b)*by2 ;
根据恒等定理得:x1 =y2 ; y1 =x2-(a/b)*y2 ;
这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.
上面的思想是递归定义了,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以
结束。
有了这个分析,Gcd函数的理解也就不难了。*/

AC代码

#include<iostream>
using namespace std;
int x, p;
void extend_gcd(int A, int B);
int main()
{
	int A;
	int n, B;
	cin >> A;
	while (A--)
	{
		cin >> n >>B;
		extend_gcd(B, 9973);
		x = x * n;
		x = (9973 + x % 9973) % 9973;
		cout << x<<endl;
	}
	return 0;
}
void extend_gcd(int A, int B)//扩展欧几
{
	if (B == 0)
	{
		x = 1;
		p = 0;
	}
	else
	{
		extend_gcd(B, A%B);
		int temp = x;
		x = p;
		p = temp - A / B * p;
	}
}

参考链接:http://blog.sina.com.cn/s/blog_e5c37cbf0102uyhs.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值