A/B
要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1)。
Input
数据的第一行是一个T,表示有T组数据。
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。
Output
对应每组数据输出(A/B)%9973。
Sample Input
2 1000 53 87 123456789
Sample Output
7922 6060
问题链接:https://vjudge.net/problem/HDU-1576
题解:扩展GCD应用,利用辗转相除法,解二元一次不定式.
/*求解 x,y 的方法的理解
我们不妨设 a>b。
1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;
2,ab<>0 时
设 ax1 +by1 =gcd(a,b);
bx2 +(a%b)y2 =gcd(b,a%b);
根据朴素欧几里德原理有 gcd(a,b)=gcd(b,a%b);
则:ax 1 +by1 =bx2 +(a%b)y2 ;
即:ax 1 +by1 =bx2 +(a-(a/b)*b)y2 =ay2 +bx2 -(a/b)*by2 ;
根据恒等定理得:x1 =y2 ; y1 =x2-(a/b)*y2 ;
这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.
上面的思想是递归定义了,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以
结束。
有了这个分析,Gcd函数的理解也就不难了。*/
AC代码:
#include<iostream>
using namespace std;
int x, p;
void extend_gcd(int A, int B);
int main()
{
int A;
int n, B;
cin >> A;
while (A--)
{
cin >> n >>B;
extend_gcd(B, 9973);
x = x * n;
x = (9973 + x % 9973) % 9973;
cout << x<<endl;
}
return 0;
}
void extend_gcd(int A, int B)//扩展欧几
{
if (B == 0)
{
x = 1;
p = 0;
}
else
{
extend_gcd(B, A%B);
int temp = x;
x = p;
p = temp - A / B * p;
}
}