Problem Description
要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1)。
Input
数据的第一行是一个T,表示有T组数据。
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。
Output
对应每组数据输出(A/B)%9973。
Sample Input
2
1000 53
87 123456789
Sample Output
7922
6060
题意分析:枚举找等式是关键,设A=k*9973+n, A/B=P*9973+X ,这个X就是我们想要的结果,然后把这两个式子联立消去A,得到(B*P-k)*9973-(B*X-n)=0 ,显然(B*X-n)一定是9973的倍数,这就找到了等式了:(B*X-n)%9973==0
附上AC代码
#include<stdio.h>
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int i;
long long int n,b;
scanf("%lld%lld",&n,&b);
long long int x;
for(i=1;i<9973;i++)
{
x=b*i-n;
if(x%9973==0)
{
printf("%d\n",i);
break;
}
}
}
return 0;
}