Mamba安装失败的过程中,causal-conv1d安装报错为连接超时
key word: vision mamba, DL ,深度学习 ,mamba unet,mamba环境安装
Mamba安装
主要故障是 pip install causal-conv1d1.2.0和 pip install mamba-ssm1.2.0 安装失败
安装时间比较长,请耐心等待
解决方案
受到启发运行Mamba项目时无法直接用pip install安装causal_conv1d和mamba_ssm_pip install causal-conv1d编译文件-CSDN博客
本地安装causal-conv1d时,一定要检查机器的gcc和g++版本,本人默认是gcc5就会编译报错,gcc9就能安装成功
gcc -V 可查看Gcc版本
安装时间比较长,请耐心等待
Ubuntu下gcc多版本共存和版本切换_ykrgcc-CSDN博客这里详细讲述了gcc版本切换
conda create -n your_env_name python=3.10.13
conda activate your_env_name
conda install cudatoolkit==11.8 -c nvidia
pip install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 --index-url https://download.pytorch.org/whl/cu118
conda install -c "nvidia/label/cuda-11.8.0" cuda-nvcc
conda install packaging
git clone https://github.com/Dao-AILab/causal-conv1d.git
cd causal-conv1d
git checkout v1.2.0 # current latest version tag
CAUSAL_CONV1D_FORCE_BUILD=TRUE pip install .
cd ..
git clone https://github.com/state-spaces/mamba.git
cd ./mamba
git checkout v1.2.0 # current latest version tag
MAMBA_FORCE_BUILD=TRUE pip install .
如果github不能访问,请参照这篇文章,一条命令解决github访问问题
成功预览
下面是个人的安装尝试,均以失败告终。
失败经历
经历一
Ubuntu内部先安装cuda11.8和cudnn
然后安装pytorch
然后安装`pip install causal-conv1d==1.2.0` ,然后就报错了。都没等到安装Manba
经历二
然后通过观察
Mamba 环境安装踩坑问题汇总及解决方法_building wheel for causal-conv1d (setup.py) …-CSDN博客
调整为
Ubuntu内部先安装cuda11.8和cudnn
然后安装pytorch
conda install packaging
然后安装pip install causal-conv1d==1.2.0,然后就报错了。也是都没等到安装Manba
任然报错
经历三
完全按照作者提到的
conda create -n your_env_name python=3.10.13
conda activate your_env_name
conda install cudatoolkit==11.8 -c nvidia
pip install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 --index-url [https://download.pytorch.org/whl/cu118](https://download.pytorch.org/whl/cu118)
conda install -c "nvidia/label/cuda-11.8.0" cuda-nvcc
conda install packaging
pip install causal-conv1d==1.2.0 # 此处报错
pip install mamba-ssm
前面已经安装好了很多的依赖,只不过还是报错了
说是链接超时,网络问题。看到了希望
经历4
conda create -n your_env_name python=3.10.13
conda activate your_env_name
conda install cudatoolkit==11.8 -c nvidia
pip install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 --index-url https://download.pytorch.org/whl/cu118
conda install -c "nvidia/label/cuda-11.8.0" cuda-nvcc
conda install packaging
git clone https://github.com/Dao-AILab/causal-conv1d.git
cd causal-conv1d
git checkout v1.2.0 # current latest version tag
CAUSAL_CONV1D_FORCE_BUILD=TRUE pip install .
pip install mamba-ssm # 此处报错
至此才有了文章顶部的解决方案
conda环境内部安装cuda
好处就是当前环境使用的cuda和机器内的cuda不冲突
pip check numpy #检查numpy在当前环境中的兼容性
conda search cudatoolkit --info #查看当前源中可用的cuda版本
conda install cudatoolkit==11.8 -c nvidia #调一个cuda安装,版本号要写完整
conda install -c "nvidia/label/cuda-11.8.0" cuda-nvcc # 要安装对应的cudnn