在现代应用开发中,生成式AI正逐渐变得至关重要。在Android平台上,通过MediaPipe LLM推断API,我们可以使用大型语言模型(LLM)来实现多种文本生成任务。本文将为您详尽介绍如何在Android应用中设置和使用LLM推断API,以便在设备上运行这些强大的语言模型。
第一步:环境设置
在开始之前,请确保您的开发环境已正确配置,以支持MediaPipe LLM推断API:
-
安装Android Studio:确保您的开发环境中安装了最新版本的Android Studio。
-
MediaPipe库依赖:在您的
build.gradle
文件中添加以下依赖:dependencies { implementation 'com.google.mediapipe:tasks-genai:0.10.14' }
-
设备准备:建议使用实际设备进行测试,以避免模拟器的性能问题和意外行为。
第二步:下载和准备模型
MediaPipe LLM推断API支持多个文本到文本的大型语言模型,如Gemma 2B、Phi-2等。下载这些模型后,将它们推送到Android设备中。以Gemma 2B为例,它可用于多种文本生成任务。
在下载适合您的任务的模型后,需确保模型格式兼容,必要时需进行格式转换。
转换 Colab Note:llm_conversion.ipynb
第三步:创建任务并配置
官方示例:
git clone https://github.com/google-ai-edge/mediapipe-samples
cd mediapipe
git sparse-checkout init --cone
git sparse-checkout set examples/llm_inference/android
使用createFromOptions()
函数来设置LLM推断任务。以下是一些基本的配置选项:
val options = LlmInferenceOptions.builder()
.setModelPath("/data/local/.../")
.setMaxTokens(1000)
.setTopK(40)
.setTemperature(0.8)
.setRandomSeed(101)
.build()
val llmInference = LlmInference.createFromOptions(context, options)
配置选项说明:
- modelPath:模型存储路径。
- maxTokens:模型处理的最大令牌数。
- topK:每步生成时考虑的最可能的k个令牌。
- temperature:文本生成随机性,数值越高生成结果越多样。
- randomSeed:生成过程的随机种子。
第四步:数据准备与执行任务
输入的格式为字符串类型的提示文本,例如:
val inputPrompt = "Compose an email to remind Brett of lunch plans at noon on Saturday."
执行任务
使用generateResponse()
方法生成响应:
val result = llmInference.generateResponse(inputPrompt)
logger.atInfo().log("result: $result")
第五步:结果处理与显示
LLM推断API会返回一个LlmInferenceResult
,并且生成的响应文本可以直接用于您的应用中。
第六步:LoRA模型自定义(可选)
通过LLM推断API支持的低秩适应(LoRA),可以在GPU上进行更精细的调整,优化LLM的性能以适应特定任务。
总结:
MediaPipe LLM推断API提供了一种简便的方法,在Android设备上应用强大的生成式AI。通过本文,您可以搭建一个基本的LLM推断应用框架,进行生成性任务处理,从而为用户提供智能、定制化的交互体验。
通过理解并使用这些工具,您将在应用开发中占据技术领先地位。探索这些模型和配置的更多可能性,为用户带来新的惊喜!
参考文档:Android 版 LLM 推理指南