AUC(Area Under the Curve)和 AP(Average Precision)

AUC(Area Under the Curve)和 AP(Average Precision)是两个常用的评估指标,用于衡量二分类模型的性能。它们在处理不平衡数据集时特别有用。

AUC(Area Under the Curve) AUC(曲线下面积)

AUC 是 ROC 曲线(Receiver Operating Characteristic Curve,受试者工作特征曲线)下面积的缩写。ROC 曲线是通过绘制真阳性率(TPR)与假阳性率(FPR)来表示模型性能的曲线。AUC 值的范围是 [0, 1],表示模型的整体性能。

  • 真阳性率(TPR):TPR = TP / (TP + FN),表示在所有实际为正类的样本中,被正确分类为正类的比例。
  • 假阳性率(FPR):FPR = FP / (FP + TN),表示在所有实际为负类的样本中,被错误分类为正类的比例。

AUC 的含义

  • AUC = 0.5:模型没有分类能力,相当于随机猜测。
  • AUC < 0.5:模型的分类性能低于随机猜测,可能模型出现了问题或标签反转。
  • AUC = 1.0:模型具有完美的分类能力,可以完美区分正负样本。

用途:AUC 常用于评估二分类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值