torch.optim.lr_scheduler.MultiStepLR
是 PyTorch 提供的一种学习率调度器,用于在训练过程中按指定的里程碑(milestones)调整优化器的学习率。它允许在训练的不同阶段逐步降低学习率,从而帮助模型在接近局部最优解时更稳定地收敛。
主要参数
-
optimizer:被调度的优化器。这通常是一个已经定义好的 PyTorch 优化器实例(例如,
torch.optim.SGD
或torch.optim.Adam
)。 -
milestones:一个包含整数的列表,表示在这些 epoch 后调整学习率。这些整数是非递减的,即每个里程碑 epoch 数需要依次增大。
-
gamma:每次在指定的里程碑处,学习率乘以的衰减因子。通常是一个小于 1 的数(例如,0.1)。
-
last_epoch:训练的最后一个 epoch 数。如果是从头开始训练,则设置为 -1。这个参数在从某个中断点恢复训练时非常有用。
用法示例
import torch import torch.optim as optim # 假设我们有一个简单的模型和优化器 model = torch.nn.Linear(2, 1) optimizer = optim.SGD(model.parameters(), lr=0.1) # 创建一个 MultiStepLR 调度器,在第30和第80个epoch时调整学习率 scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[30, 80], gamma=0.1) # 模拟训练过程 num_epochs = 100 for epoch in range(num_epochs): # 训练步骤(示例) optimizer.zero_grad() output = model(torch.randn(1, 2)) loss = (output - torch.randn(1)).pow(2).sum() loss.backward() optimizer.step() # 调度器步进 scheduler.step() # 打印当前学习率 current_lr = optimizer.param_groups[0]['lr'] print(f'Epoch {epoch+1}, Learning Rate {current_lr}')
运行机制
-
初始化:创建调度器实例时,指定里程碑和衰减因子。
-
训练循环:在每个 epoch 结束后调用
scheduler.step()
,调度器会检查当前 epoch 是否在milestones
列表中,如果是,则将学习率乘以gamma
。
学习率变化示例
假设初始学习率为 0.1,milestones
为 [30, 80],gamma
为 0.1。
- 在前30个 epoch 中,学习率保持在 0.1。
- 在第31个 epoch,学习率变为 0.1 * 0.1 = 0.01。
- 在第81个 epoch,学习率变为 0.01 * 0.1 = 0.001。
使用 MultiStepLR
可以使训练过程在初始阶段快速学习,而在后期逐步减少学习率,以更稳定地逼近最优解。