Xavier 均匀初始化方法(Xavier Uniform Initialization)来

使用 Xavier 均匀初始化方法(Xavier Uniform Initialization)来初始化张量 m.weight 的权重值:


1. Xavier 均匀初始化的定义

Xavier 均匀初始化是 权重初始化 的一种方法,其主要目的是:

  • 保持前向传播和反向传播过程中,梯度的尺度在各层间保持稳定,避免梯度爆炸或梯度消失。

公式如下:
W ∼ U [ − 6 n i n + n o u t , 6 n i n + n o u t ] W \sim \mathcal{U}\left[-\sqrt{\frac{6}{n_{in} + n_{out}}}, \sqrt{\frac{6}{n_{in} + n_{out}}}\right] WU[nin+nout6 ,nin+nout6 ]
其中:

  • U \mathcal{U} U 表示均匀分布。
  • n i n n_{in} nin: 当前层的输入神经元数量。
  • n o u t n_{out} nout: 当前层的输出神经元数量。
  • 权重值 W W W 被初始化为介于上述范围内的随机数。

2. 代码解析

nn.init.xavier_uniform_(m.weight)
  • m.weight:

    • m 通常是一个层(如 nn.Linearnn.Conv2d)。
    • m.weight 是该层的权重张量。
  • nn.init.xavier_uniform_:

    • PyTorch 提供的函数,用于实现 Xavier 均匀初始化。
    • 它会根据权重的形状自动计算 n i n n_{in} nin n o u t n_{out} nout

3. 使用示例

假设 m 是一个全连接层:

import torch
import torch.nn as nn

# 定义一个线性层
m = nn.Linear(in_features=128, out_features=64)

# 使用 Xavier 均匀初始化
nn.init.xavier_uniform_(m.weight)

# 查看初始化后的权重范围
print(m.weight)

4. 为什么需要 Xavier 初始化?

在深层神经网络中:

  1. 前向传播:

    • 如果权重初始化过大,激活值会过于分散,导致梯度爆炸。
    • 如果权重初始化过小,激活值会过于集中,导致梯度消失。
  2. 反向传播:

    • 权重的梯度也可能因初始化不当而无法有效更新。

Xavier 初始化确保:

  • 权重值既不太大也不太小。
  • 神经元的输入和输出方差尽可能相同,保证梯度在各层之间稳定传播。

5. Xavier 均匀与 Xavier 正态的区别

PyTorch 还提供了 Xavier 正态初始化,用法类似:

nn.init.xavier_normal_(m.weight)

区别:

  • Xavier 均匀: 从均匀分布中采样初始化值。
  • Xavier 正态: 从正态分布中采样初始化值,分布均值为 0,标准差为:
    σ = 2 n i n + n o u t \sigma = \sqrt{\frac{2}{n_{in} + n_{out}}} σ=nin+nout2

选择哪种方法主要取决于具体的模型和任务。


BP神经网络(Backpropagation Neural Network)中的权重初始化是一个关键步骤,它直接影响到模型的学习能力和训练效率。在Python中,特别是在深度学习库如TensorFlow或PyTorch中,通常有几种常见的初始化策略: 1. 零初始化(Zero Initialization):所有权重设置为0,但这种方法可能导致梯度消失或爆炸的问题。 2. 随机初始化(Random Initialization):例如,常用于Sigmoid激活函数的是Xavier(也称He)初始化,即对于每一层,输入节点数乘以输出节点数的平方根的随机值。TensorFlow中有`tf.keras.initializers.he_uniform()`或`he_normal()`函数。 3. Glorot初始化(又称Xavier初始化):另一种常用的随机初始化策略,保证了前向传播和反向传播的梯度相等,可以避免梯度消失或爆炸。对应于均匀分布`glorot_uniform()`, 对称的正态分布则用`glorot_normal()`。 4. He初始化(适合ReLU等非饱和激活函数):对ReLU激活函数,推荐使用He初始化,其标准差更大,对于负偏置的节点也有更好的效果。 5. Orthogonal Initialization:特别适用于自编码器,通过正交矩阵保证权重之间的线性独立,防止模式塌陷。 使用这些初始化时,记得在构建神经网络模型时给每个层的权重应用相应的初始化方法。例如,在Keras中,可以在创建全连接层时指定权重初始化: ```python from tensorflow import keras model.add(keras.layers.Dense(units=hidden_units, activation='relu', kernel_initializer='he_uniform')) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值