采用SMO优化算法训练SVM(实战篇)

本文介绍了支持向量机(SVM)的基本概念,强调其实战应用和优化目标函数。接着,详细阐述了序列最小最优化(SMO)算法的工作原理,包括简化版和完整版SMO的区别。简化版SMO通过依次遍历数据集选择第一个α,随机选择第二个α进行优化;而完整版SMO则采用了更高效的α选择策略,以加快运算速度。文章还提供了Python代码实现,展示了SVM和SMO的训练过程,并给出了支持向量和权重向量的计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算法笔记更新~

引入

  SVM(支持向量机),相信有一些机器学习基础的朋友对这个算法应该早已耳熟。SVM是现有的机器学习基础算法里较为能扛的一个。此篇文章偏向实战,对svm背后繁杂而又精致的数学知识不做展开叙述,笔者学习时参考的是东大一位智慧与才情并存的教授在知乎发表的文章:零基础学习SVM,教授讲解的十分详细,引人入胜,层层递进的同时令人不禁感慨数学的美妙!如果你对svm最后的目标函数一无所知,同时又有兴趣探个究竟,强烈安利你移步上述链接。
SVM经过一番推导之后,得到的目标函数为:
在这里插入图片描述

在这里插入图片描述
对这个优化目标函数,解读为:需要找到一组α,<α1, α2, α3…… >,使得上式值最大。一旦α值确定,分隔超平面也就确定了。

SMO基本内容

  在线性约束条件下优化具有多个变量的二次函数目标函数并不容易,1996年发布的序列最小最优化算法(SMO),用于训练SVM。SMO算法的目标是找出一系列α,从而得到b值,进而计算权重向量w,w与b确定后,分隔超平面也就确定了。

  SMO工作原理:每次循环中选择两个α进行优化处理,一旦找到满足条件的两个α,就增大其中一个同时减小另外一个。此处的条件为:(1)两个α必须要在间隔边界之外,(2)还未进行过区间处理或者不在边界上

  简化版SMO算法完整版SMO算法的主要区别在于α选择方式不同,完整版SMO算法是对简化版SMO算法的优化,旨在加快其运行速度。
  简化版SMO:第一个α:依次遍历数据集。第二个α:随机选择
  完整版SMO:第一个α,选择方式在两种方式之间交替进行。(1)、在所有数据集上进行单遍扫描。(2)、在所有非边界α中实现单遍扫描。非边界α指的是那些不等于边界0或者C的α值。第二个α:在优化过程中,会通过最大化步长的方式来获得第二个α值。此处的步长指的是两个α对应的实例的分类误差。

程序实现

简化版SMO

##################加载数据集##########################
def loadDataSet(fileName):
    dataMat = []; labelMat = []
    fr = open(fileName)
    for line in fr.readlines():
        lineArr = line.strip().split('\t')
        dataMat.append([float(lineArr[0]), float(lineArr[1])])
        labelMat.append(float(lineArr[2]))
    return dataMat,labelMat

进行优化时需要调用的辅助函数

#########随机选择第二个α,与第一个不相等######
def selectJrand(i,m):
    j=i #we want to select any J not equal to i
    while (j==i):
        j = int(random.uniform(0,m))
    return j

##########调整新的α对应的上下限#############
def clipAlpha(aj,H,L):
    if aj > H: 
        aj = H
    if L > aj:
        aj = L
    return aj
##########简化版SMO
def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
    dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).transpose()
    b = 0; m,n = shape(dataMatrix)
    alphas = mat(zeros((m,1)))  ##所有α初始化为0
    iter = 0
    while (iter < maxIter):
        alphaPairsChanged = 0   #统计成功修改的α对数
        for i in range(m):
            #第一个α是依次遍历的
            fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b
            Ei = fXi - float(labelMat[i])#if checks if an example violates KKT conditions
            #第一个α可以调整,就开始选择第二个,不可以则进入下一次循环
            if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)):
                #随机选择第二个α
                j = selectJrand(i,m)
                fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b
                Ej = fXj - float(labelMat[j])
                #保存更新前的两个α值
                alphaIold = alphas[i].copy(); alphaJold = alphas[j].copy();
                #如果两个点不同类,则α1-α2=k,否则α1+α2=k
                if (labelMat[i] != labelMat[j]):
                    L = max(0, alphas[j] - alphas[i])
                    H = min(C, C + alphas[j] - alphas[i])
                else:
                    L = max(0, alphas[j] + alphas[i] - C)
                    H = min(C, alphas[j] + alphas[i])
                #当上限和下限相等时,即没有调整的余地了,此时直接进入下一次循环。重新选第一个α和第二个α
                if L==H:
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

且听风吟~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值