CF791A Bear and Big Brother 【题解】

来一篇 O ( 1 ) O(1) O(1)的题解

题目可以转化为求最小的 x x x使得下式成立。

a ∗ 3 x > b ∗ 2 x a*3^x>b*2^x a3x>b2x

继续转化

3 x 2 x > b a \frac{3^x}{2^x}>\frac{b}{a} 2x3x>ab

即:

( 3 2 ) x > b a (\frac{3}{2})^x>\frac{b}{a} (23)x>ab

那么如何求最小的 x x x呢?

可以先求

( 3 2 ) x = b a (\frac{3}{2})^x=\frac{b}{a} (23)x=ab

这里的 x x x就是 l o g 3 2 b a log_{\frac 32}\frac ba log23ab

我们只要向下取整再加上 1 1 1就好啦

还有一个问题: c c c++没有 l o g 3 2 log_{\frac 32} log23怎么办?

没关系!换底公式 , 出现!

l o g n m = l o g a m l o g a n log_n m=\frac{log_a m}{log_a n} lognm=loganlogam

这时就可以用 c c c++自带的 l o g log log函数啦(应该是以 e e e为底的)

c m a t h cmath cmath库里哦!

代码奉上!

#include<iostream>
#include<cmath>
using namespace std;
int main(){
    int a,b;cin>>a>>b;
    double n=1.5,m=1.0*b/a;
    cout<<int(log(m)/log(n))+1;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值