引言
本期介绍一种新的基于数学的优化算法——牛顿-拉夫逊优化算法Newton-Raphson-based optimizer,NRBO,受到Newton-Raphson方法的启发。它使用两个规则来探索整个搜索过程:Newton-Raphson搜索规则(NRSR)和陷阱避免算子(TAO),并使用几组矩阵来进一步探索最佳结果。该成果于2024年2月发表在中科院2区top SCI期刊Engineering Applications of Artificial Intelligence。
原文作者使用64个基准数值函数对NRBO的性能进行了评估,其中包括23个标准基准,29个CEC2017约束基准和12个CEC2022基准。此外,利用NRBO对12个CEC2020现实约束工程优化问题进行了优化。结果表明,该算法具有较高的勘探开发平衡性、较高的收敛速度和有效避免局部最优的能力,具有较好的优化效果。
参考文献
R. Sowmya, M. Premkumar, and P. Jangir, “Newton-Raphson-Based Optimizer: A New Population-Based Metaheuristic Algorithm for Continuous Optimization Problems,” Engineering Applications of Artificial Intelligence, Vol. 128, pp. 107532, February 2024, doi: 10.1016/j.engappai.2023.107532.
Matlab代码下载
微信搜索并关注-优化算法侠,或扫描下方二维码关注,以算法名字搜索历史文章即可下载。
2024年优化算法-牛顿-拉夫逊优化算法Newton-Raphson-based optimizer(附Matlab代码)