引言
本期介绍了一种新的自然启发的元启发式算法-真菌生长优化算法Fungal growth optimizer,FGO,这是受到自然界真菌生长行为的启发。该算法于2025年3月最新发表在中科院1区SCI期刊 Computer Methods in Applied Mechanics and Engineering。
模拟了以菌丝尖端生长、分枝和孢子萌发为代表的真菌生长行为,提出了一种具有多种探索和开发算子的鲁棒优化算法,可以在较高的精度和可接受的时间内解决多个复杂的优化问题。一开始,菌丝在寻找空间中线性生长,寻找营养丰富的区域。然而,这些菌丝可能会由于一些化学和环境条件而改变其生长方向,帮助它们尽可能地探索搜索空间。
1. 初始化。和其他算法一样,采用随机初始化:
2.菌丝尖端生长行为:在合适的条件下,种群中的每个菌丝沿着一条直线扩张,以探索搜索空间,寻找营养最多的区域。然而,某些环境和化学因素可能导致菌丝改变其生长方向。
2.1 增长速度和方向
展示了FGO如何模拟大量菌丝的生长速度和方向,以适当地探索搜索空间。在本研究中,我们使用一个与当前适应度值相关的指数函数来模拟FGO的生长速率,来表示富营养区和贫营养区,适应度值高的解代表富营养区,适应度值低的解代表贫营养区
菌丝的生长方向受到可能突然发生的环境和化学线索的影响。因此,我们随机表示FGO中的生长方向,模拟每个菌丝生长方向可能发生的变化
2.2 趋化行为遗忘和补充策略
在FGO中,开发作业人员基于模仿化学向性行为,根据化学信号开发富营养区或其他区域,以尽快获得更好的解决方案:
3.菌丝分枝和孢子萌发:侧向分支是必不可少的,因为它们允许真菌探索不同的方向,通常会产生强大的勘探操作,使所提出的FGO能够摆脱局部最优,并为几个复杂的优化问题提供出色的解决方案。在本研究中,我们基于两种不同的模式设计了这种行为,这可能有助于尽可能地探索搜索空间
FGO伪代码:
03. 对比验证
原文作者根据四个著名的进化计算大会(CEC)基准(CEC2020、CEC2017、CEC2014和CEC2022)和11个工程设计问题进行评估FGO的。并与最近提出的15种算法以及L-SHADE、LSHADE-cnEpSin、改进的LSHADE-SPACMA、SHADE、LSHADE-SPACMA、GQPSO等11种高性能算法进行了比较,证明了该算法的优越性。
参考文献
2025年3月一区SCI-真菌生长优化算法Fungal growth optimizer-附Matlab免费代码
Matlab代码下载
微信搜索并关注-优化算法侠(英文名:Swarm-Opti),或扫描下方二维码关注,以算法名字搜索历史文章即可下载。
2025年3月一区SCI-真菌生长优化算法Fungal growth optimizer-附Matlab免费代码
2025年3月一区SCI-真菌生长优化算法Fungal growth optimizer-附Matlab免费代码
点击链接跳转:
375种群优化算法免费下载-matlab
https://mp.weixin.qq.com/s/AsFTBmaZ8UOgES9TQuL0Kg?token=1339859150&lang=zh_CN
求解cec测试函数-matlab
cec2022测试函使用教程及matlab代码免费下载
绘制cec2017/018/2019/2020/2021/2022函数的三维图像教程,SO EASY!