代码随想录算法训练营第四十二天| 01背包问题(二维、一维)、416.分割等和子集

系列文章目录



动态规划:01背包理论基础

(1)输入读取方法:

  1. Scanner sc = new Scanner(System.in);
            String str = sc.nextLine();
            int m = Integer.parseInt(str.split(" ")[0]);
            int n = Integer.parseInt(str.split(" ")[1]);
            //将String[]数组通过stream流转换成int[]数组
            int[] weights = Arrays.stream(sc.nextLine().split(" ")).mapToInt(/*s->Integer.parseInt(s)*/Integer::parseInt).toArray();
            int[] values =
                    Arrays.stream(sc.nextLine().split(" ")).mapToInt(new ToIntFunction<String>() {
                        @Override
                        public int applyAsInt(String value) {
                            return Integer.parseInt(value);
                        }
                    }).toArray();
    
  2. Scanner sc = new Scanner(System.in);
            
            // 读取背包容量和物品数量
            int m = sc.nextInt();
            int n = sc.nextInt();
            sc.nextLine(); // 消耗掉输入缓冲区的换行符
            
            // 读取物品重量和价值
            int[] weights = Arrays.stream(sc.nextLine().split(" ")).mapToInt(Integer::parseInt).toArray();
            int[] values = Arrays.stream(sc.nextLine().split(" ")).mapToInt(Integer::parseInt).toArray();
    
  3. // 获取输入数据
            Scanner sc = new Scanner(System.in);
            int m = sc.nextInt();
            int n = sc.nextInt();
            
            int[] weights = new int[m];
            for (int i = 0; i < m; i++){
                weights[i] = sc.nextInt();
            }
            
            int[] values = new int[m];
            for (int i = 0; i < m; i++){
                values[i] = sc.nextInt();
            }
    

①二维数组

(1)确定dp数组及其含义:
表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
(2)确定递推关系

  • 容量不够:一定放不下,直接返回不放 i 的最大价值。
  • 容量够:根据两种方案的价值做选择,选价值大的。
    • 不放i:相当于在 0 ~ (i-1) 件物品中选择,容量不变;
    • i:在确定放 i 的前提下(腾出空间给 i ),获取背包能产生的最大价值,再加上 i 的价值。

(3)考虑初始化
初始化第一行:对应物品0,如果背包容量不够,则设置为0,如果够,则设置为values[0]
初始化第一列:对应背包容量0,则无论是什么物品都放不下,不能产生任何价值,直接为默认值0即可。

代码如下:

import java.util.Arrays;
import java.util.Scanner;
import java.util.function.ToIntFunction;

public class BagProblem {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        String str = sc.nextLine();
        int m = Integer.parseInt(str.split(" ")[0]);
        int n = Integer.parseInt(str.split(" ")[1]);
        //将String[]数组通过stream流转换成int[]数组
        int[] weights = Arrays.stream(sc.nextLine().split(" ")).mapToInt(/*s->Integer.parseInt(s)*/Integer::parseInt).toArray();
        int[] values =
                Arrays.stream(sc.nextLine().split(" ")).mapToInt(new ToIntFunction<String>() {
                    @Override
                    public int applyAsInt(String value) {
                        return Integer.parseInt(value);
                    }
                }).toArray();
        //确定dp数组下标及含义:dp[i][j] 表示从下标为0-i的物品里任取,放到容量为j的背包中,价值总和最大为多少
        int[][] dp = new int[m][n+1];//需要考虑容量和物品数量为0的情况
        //dp数组初始化
        for (int i = 0; i < m; i++) {//列初始化
            dp[i][0] = 0;
        }
        for (int j = weights[0]; j <= n; j++) {//行初始化
            dp[0][j] = values[0];
        }
        //确定遍历顺序(先遍历物品再遍历容量或者先遍历容量再遍历背包都行)
        //①先遍历物品再遍历容量
        for (int i = 1; i < m; i++) {
            for (int j = 1; j <= n; j++) {
                /**
                 * 当前背包的容量都没有当前物品i大的时候,是不放物品i的
                 * 那么前i-1个物品能放下的最大价值就是当前情况的最大价值
                 */
                if(j<weights[i]){
                    dp[i][j] = dp[i - 1][j];
                }else {
                    /**
                     * 当前背包的容量可以放下物品i
                     * 那么此时分两种情况:
                     *    1、不放物品i
                     *    2、放物品i
                     * 比较这两种情况下,哪种背包中物品的最大价值最大
                     */
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weights[i]] + values[i]);
                }
            }
        }
        System.out.println(dp[m-1][n]);
    }
}

②一维数组(滚动数组)

(1)确定dp数组及其含义:
在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]
(2)确定递推关系

  • 容量不够: dp[j] ,不放物品i
  • 容量够:根据两种方案的价值做选择,选价值大的。
    • 不放idp[j] ,相当于在 0 ~ (i-1) 件物品中选择,容量不变;
    • idp[j - weight[i]] + value[i],在确定放 i 的前提下(腾出空间给 i ),获取背包能产生的最大价值,再加上 i 的价值。

(3)考虑初始化
dp[0]=0,因为背包容量为0所背的物品的最大价值就是0。那么dp数组除了下标0的位置,初始为0,其他下标应该初始化多少呢?看一下递归公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。

import java.util.Arrays;
import java.util.Scanner;
public class BagProblem {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int m = sc.nextInt();
        int n = sc.nextInt();
        sc.nextLine();//接收换行符
        int[] weights = Arrays.stream(sc.nextLine().split(" ")).mapToInt(Integer::parseInt).toArray();
        int[] values = Arrays.stream(sc.nextLine().split(" ")).mapToInt(Integer::parseInt).toArray();

        //确定dp数组及含义(背包容量为j的背包所能装的最大价值
        int[] dp = new int[n + 1];
        //dp数组初始化
        dp[0] = 0;//当背包容量为0时,最大价值也为0
        for (int i = 0; i < m; i++) {//遍历物品
            for (int j = n; j >= 0; j--) {//遍历容量(倒序遍历)
                if (j < weights[i]) {
                    dp[j] = dp[j];
                } else {
                    dp[j] = Math.max(dp[j], dp[j - weights[i]] + values[i]);
                }
            }
        }
        System.out.println(dp[n]);
    }
}

416. 分割等和子集

①回溯法(超时)

import java.util.Arrays;

public class SplitEqualSumSubsets {
    public static void main(String[] args) {
        int[] nums = {3,3,3,4,5};
        Solution solution = new Solution();
        boolean answer = solution.canPartition(nums);
        System.out.println(answer);
    }
}

class Solution {
    int sum = 0;
    int tempSum = 0;

    public boolean canPartition(int[] nums) {
        for (int i = 0; i < nums.length; i++) {
            sum += nums[i];
        }
        if (sum % 2 != 0) return false;//如果总和为奇数,则无法分割为两个等和子集
        //对数组从小到大排序
        Arrays.sort(nums);
        return backTracking(nums, 0);
    }

    public boolean backTracking(int[] nums, int startIndex) {//确定回溯函数的参数及返回值
        //确定回溯函数终止条件
        if (tempSum == sum / 2) return true;
        if (tempSum > sum / 2) {
            return false;
        }
        //确定单层递归逻辑
        boolean answer1 = false;
        for (int i = startIndex; i < nums.length; i++) {
            tempSum += nums[i];
            answer1 = backTracking(nums, i + 1);
            if(answer1)return true;// 如果找到一个可行解,立即返回,不再往下遍历
            tempSum -= nums[i];//回溯
        }
        return answer1;
    }
}

②动态规划(01背包)

未剪枝版

class Solution {
    public boolean canPartition(int[] nums) {
        int sum = 0;
        for (int i = 0; i < nums.length; i++) {
            sum += nums[i];
        }
        //总和为奇数,不能平分
        if (sum % 2 != 0) return false;
        //确定dp数组含义(容量为j的背包,放进0~i任意物品后,背的最大重量。
        int target = sum / 2;
        int[] dp = new int[target + 1];
        //dp数组初始化
        dp[0] = 0;
        for (int i = 0; i < nums.length; i++) {//先遍历物品
            for (int j = target; j >= 0; j--) {//倒序遍历背包容量
                if (j < nums[i]) {
                    dp[j] = dp[j];
                } else {
                    dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);
                }
                //System.out.print(dp[j]);
            }
            //System.out.println();
        }
        return dp[target] == target;//如果背包装满了,即能找到等和子集
    }
}

剪枝版

class Solution {
    public boolean canPartition(int[] nums) {
        int sum = 0;
        for (int i = 0; i < nums.length; i++) {
            sum += nums[i];
        }
        //总和为奇数,不能平分
        if (sum % 2 != 0) return false;
        //确定dp数组含义(容量为j的背包,放进0~i任意物品后,背的最大重量。
        int target = sum / 2;
        int[] dp = new int[target + 1];
        //dp数组初始化
        dp[0] = 0;
        for (int i = 0; i < nums.length; i++) {//先遍历物品
            for (int j = target; j >= 0; j--) {//倒序遍历背包容量
                if (j < nums[i]) {
                    dp[j] = dp[j];
                } else {
                    dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);
                }
                //System.out.print(dp[j]);
            }
            //System.out.println();
            //剪枝一下,每一次完成内层的for-loop,立即检查是否dp[target] == target,优化时间复杂度
            if (dp[target] == target) return true;
        }
        return dp[target] == target;//如果背包装满了,即能找到等和子集
    }
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值