【Tensorboard 使用】生成model结构图解决方案:add_graph() 和 torchsummary可视化模型信息

本文介绍了如何在PyTorch中使用add_graph函数将模型结构可视化到Tensorboard,并通过torchsummary快速打印模型概况。步骤包括添加图至Tensorboard、使用torchsummary进行参数查看,以及如何通过终端启动Tensorboard进行查看。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


一、add_graph()

1.具体参数及介绍见之前博客——可视化工具Tensorboard

2.pytorch源码

writer = SummaryWriter(comment='test_your_comment',filename_suffix="_test_your_filename_suffix")

# 模型
fake_img = torch.randn(1, 3, 32, 32) #生成假的图片作为输入

lenet = LeNet(classes=2) #以LeNet模型为例

writer.add_graph(lenet, fake_img) #模型及模型输入数据

writer.close()

3.可视化操作步骤:Tensorboard的打开方式见之前可视化损失函数的步骤

(1)打开pycharm中的Terminal
(2)输入命令 tensorboard –-logdir=+"路径"即可,定位到runs文件
位置
该代码执行完之后会出现一个runs文件夹
(3)打开网页链接即可
(4)显示如下界面

在这里插入图片描述

二、torchsummary

1.具体参数及介绍见之前博客——可视化工具Tensorboard

2.pytorch源码

from torchsummary import summary
print(summary(lenet, (3, 32, 32), device="cpu"))

 
 
  • 1
  • 2

3.打印结果

在这里插入图片描述

参考

深度之眼pytorch框架班

解释代码内容: def run_backend(cfg, model, states, keyframes, K): set_global_config(cfg) device = keyframes.device factor_graph = FactorGraph(model, keyframes, K, device) retrieval_database = load_retriever(model) mode = states.get_mode() while mode is not Mode.TERMINATED: mode = states.get_mode() if mode == Mode.INIT or states.is_paused(): time.sleep(0.01) continue if mode == Mode.RELOC: frame = states.get_frame() success = relocalization(frame, keyframes, factor_graph, retrieval_database) if success: states.set_mode(Mode.TRACKING) states.dequeue_reloc() continue idx = -1 with states.lock: if len(states.global_optimizer_tasks) > 0: idx = states.global_optimizer_tasks[0] if idx == -1: time.sleep(0.01) continue # Graph Construction kf_idx = [] # k to previous consecutive keyframes n_consec = 1 for j in range(min(n_consec, idx)): kf_idx.append(idx - 1 - j) frame = keyframes[idx] retrieval_inds = retrieval_database.update( frame, add_after_query=True, k=config["retrieval"]["k"], min_thresh=config["retrieval"]["min_thresh"], ) kf_idx += retrieval_inds lc_inds = set(retrieval_inds) lc_inds.discard(idx - 1) if len(lc_inds) > 0: print("Database retrieval", idx, ": ", lc_inds) kf_idx = set(kf_idx) # Remove duplicates by using set kf_idx.discard(idx) # Remove current kf idx if included kf_idx = list(kf_idx) # convert to list frame_idx = [idx] * len(kf_idx) if kf_idx: factor_graph.add_factors( kf_idx, frame_idx, config["local_opt"]["min_match_frac"] ) with states.lock: states.edges_ii[:] = factor_graph.ii.cpu().tolist() states.edges_jj[:] = factor_graph.jj.cpu().tolist() if config["use_calib"]: factor_graph.solve_GN_calib() else: factor_graph.solve_GN_rays() with states.lock: if len(states.global_optimizer_tasks) > 0: idx = states.global_optimizer_tasks.pop(0)
最新发布
03-17
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值