【Tensorboard 使用】生成model结构图解决方案:add_graph() 和 torchsummary可视化模型信息

本文介绍了如何在PyTorch中使用add_graph函数将模型结构可视化到Tensorboard,并通过torchsummary快速打印模型概况。步骤包括添加图至Tensorboard、使用torchsummary进行参数查看,以及如何通过终端启动Tensorboard进行查看。
摘要由CSDN通过智能技术生成


一、add_graph()

1.具体参数及介绍见之前博客——可视化工具Tensorboard

2.pytorch源码

writer = SummaryWriter(comment='test_your_comment',filename_suffix="_test_your_filename_suffix")

# 模型
fake_img = torch.randn(1, 3, 32, 32) #生成假的图片作为输入

lenet = LeNet(classes=2) #以LeNet模型为例

writer.add_graph(lenet, fake_img) #模型及模型输入数据

writer.close()

3.可视化操作步骤:Tensorboard的打开方式见之前可视化损失函数的步骤

(1)打开pycharm中的Terminal
(2)输入命令 tensorboard –-logdir=+"路径"即可,定位到runs文件
位置
该代码执行完之后会出现一个runs文件夹
(3)打开网页链接即可
(4)显示如下界面

在这里插入图片描述

二、torchsummary

1.具体参数及介绍见之前博客——可视化工具Tensorboard

2.pytorch源码

from torchsummary import summary
print(summary(lenet, (3, 32, 32), device="cpu"))

 
 
  • 1
  • 2

3.打印结果

在这里插入图片描述

参考

深度之眼pytorch框架班

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值