You are given n non-negative integers x1, x2, …, xn. You are also given a positive integer E. You have to find n non-negative real numbers p1, p2, …, pn such that p1 · x1 + p2 · x2 + p3 · x3 + … + pn · xn = E and p1 + p2 + … + pn = 1.
If it’s not possible to find n such numbers, output -1 instead.
Input
The first line of the input contains a single integer T denoting the number of test cases. The description of T test cases follows.
The first line of each test case contains two space-separated integers n and E.
The second line contains n space-separated integers x1, x2, …, xn.
Output
For each test case, print a single line containing n space-separated real numbers denoting the values of p1, p2, …, pn. If there is more than one possible solution, you may output any one. If there is no solution, print -1 instead.
When a solution exists, your answer will be considered correct if the absolute value of the expression p1 · x1 + p2 · x2 + p3 · x3 + … + pn · xn - E doesn’t exceed 10-6 and the value of |(p1 + p2 + p3 + … + pn) - 1| doesn’t exceed 10-6.
Constraints
1 ≤ T ≤ 105
1 ≤ n, E ≤ 103
1 ≤ xi ≤ 103
sum of n over all test cases doesn’t exceed 106
Example
Input
3
1 2
1
3 3
1 2 3
4 4
1 2 3 6
Output
-1
0 0 1.00
0 0 0.66666666666 0.33333333333
其实挺简单的一个题,所以自己开了这道题,结果自己不细心少考虑了一种情况,结果最后这道题没A掉,老老实实把锅背好,QAQ
思路
其实就是不定方程求解问题,求个特解就可以了,如果给定的序列中有E存在,就让序列中E的p为1,其余的p全为0.如果序列中没有E,则只要有一个比E大的,一个biE小的就可以按照公式求解,否则无解
#include<iostream>
#include<string>
#include<stack>
#include<vector>
#include<cstdio>
#include<cstring>
#include<map>
#include<queue>
#include<algorithm>
#include<iomanip>
#include<cctype>
using namespace std;
map<int,int> in;
int num[1001];
int dis[1001];
int main()
{
long double p1,p2;
int T;
cin>>T;
while(T--)
{
in.clear();
int _max=0;
int _i,_j=-1;
int n,e;
cin>>n>>e;
for(int i=0; i<n; i++)
{
cin>>num[i];
if(_max<num[i])
{
_max=num[i];
_i=i;
}
if(num[i]<e)
_j=i;
in[num[i]]=1;
dis[num[i]]=i;
}
if(_max<e||_j==-1&&in[e]==0)
cout<<"-1\n";
else if(in[e]==1)
{
int flag=0;
for(int i=0; i<n; i++)
{
if(i!=dis[e])
{
if(!flag)
{
cout<<"0";
flag=1;
}
else
cout<<" 0";
}
else
{
if(!flag)
{
cout<<"1.00";
flag=1;
}
else
cout<<" 1.00";
}
}
cout<<endl;
}
else
{
int x1=_max;
int x2=num[_j];
p1=(long double)(x1-e)/((long double)(x1-x2));
p2=1-p1;
int flag=0;
for(int i=0; i<n; i++)
{
if(i!=_i&&i!=_j)
{
if(!flag)
{
cout<<"0";
flag=1;
}
else
cout<<" 0";
}
if(i==_i)
{
if(!flag)
{
cout<<setprecision(11)<<p2;
flag=1;
}
else
cout<<setprecision(11)<<" "<<p2;
}
if(i==_j)
{
if(!flag)
{
cout<<setprecision(11)<<p1;
flag=1;
}
else
cout<<setprecision(11)<<" "<<p1;
}
}
cout<<endl;
}
}
}