Python 机器学习 随机森林 天气最高温度预测任务(三)

开始调节新的参数

from sklearn.ensemble import RandomForestRegressor

rf = RandomForestRegressor(random_state = 42)

from pprint import pprint

# 打印所有参数
pprint(rf.get_params())

开始尝试各种参数吧

调参路漫漫,参数的可能组合结果实在太多了,我们还得有章可循,首先登场的是:RandomizedSearchCV(),这个函数可以帮助我们在候选集组合中,不断的随机选择一组合适的参数来建模,并且求其交叉验证后的评估结果。为什么要不断随机的选择呢?按顺序一个个来不是更靠谱嘛,假设咱们有5个参数待定,每个参数都有10种候选值,那一共有多少种可能性呢?这个数字就很大了吧,由于建立模型所花的时间并不少,当数据量大的时候,几小时能完成一次建模就已经不错了,所以我们很难遍历到所有的可能,随机变成了一种策略,让我们大致能得到比较合适的参数组合,该函数所需的所有参数解释都在API文档中有详细说明.

from sklearn.model_selection import RandomizedSearchCV

# 建立树的个数
n_estimators = [int(x) for x in np.linspace(start = 200, stop = 2000, num = 10)]
# 最大特征的选择方式
max_features = ['auto', 'sqrt']
# 树的最大深度
max_depth = [int(x) for x in np.linspace(10, 20, num = 2)]
max_depth.append(None)
# 节点最小分裂所需样本个数
min_samples_split = [2, 5, 10]
# 叶子节点最小样本数,任何分裂不能让其子节点样本数少于此值
min_samples_leaf = [1, 2, 4]
# 样本采样方法
bootstrap = [True, False]

# Random grid
random_grid = {'n_estimators': n_estimators,
               'max_features': max_features,
               'max_depth': max_depth,
               'min_samples_split': min_samples_split,
               'min_samples_leaf': min_samples_leaf,
               'bootstrap': bootstrap}

在这个任务中,我们只给大家举例来进行说明,考虑到时间问题,所选的参数的候选值并没有给出太多。这里值得注意的是每一个候选参数的参数空间需要我们好好把控,因为如果这个取值范围给定的不恰当,最好的结果肯定也不会太好,这里可以参考一些经验值或者不断通过实验结果来改变参数空间,这是一个反复的过程,并不是说我们机器学习建模任务就是从前往后的进行,有了实验结果之后,都需要再回过头来反复来对比不同参数,不同预处理方案的。 

# 随机选择最合适的参数组合
rf = RandomForestRegressor()

rf_random = RandomizedSearchCV(estimator=rf, param_distributions=random_grid,
                              n_iter = 100, scoring='neg_mean_absolute_error',
                              cv = 3, verbose=2, random_state=42, n_jobs=-1)

# 执行寻找操作
rf_random.fit(train_features, train_labels)

 rf_random.best_params_

这里给大家解释一下RandomizedSearchCV中常用的参数,其实在API文档中都给出了说明,还是建议大家养成这个查阅文档的习惯。

  • Estimator:RandomizedSearchCV这个方法是一个通用的,并不是专为随机森林设计的,所以我们需要指定选择的算法模型是什么。
  • Distributions:参数的候选空间,我们之间已经用字典格式给出了所需的参数分布。
  • n_iter:随机寻找参数组合的个数,比如在这里我们赋值了100代表接下来要随机找100组参数的组合,在其中找到最好的一个。
  • Scoring:评估方法,按照该方法去找到最好的参数组合
  • Cv:交叉验证,咱们之前已经唠过了。
  • Verbose:打印信息的数量,看自己的需求了。
  • random_state:随机种子,为了使得咱们的结果能够一致,排除掉随机成分的干扰,一般我们都会指定成一个值,用你自己的幸运数字就好。
  • n_jobs:多线程来跑这个程序,如果是-1就会用所有的,但是可能会有点卡。

即便我把n_jobs设置成了-1,程序运行的还是很慢,因为我们建立100次模型来选择参数,并且还是带有3折交叉验证的,那就相当于300个任务了,结果如下图所示:

 

评估函数

接下来就对比一下,经过调参后的结果和用默认参数结果的差异,所有默认参数在API中都有说明,比如n_estimators : integer, optional (default=10),这里就说明在随机森林模型中,默认要建立树的个数是10个。先给出评估标准:

def evaluate(model, test_features, test_labels):
    predictions = model.predict(test_features)
    errors = abs(predictions - test_labels)
    mape = 100 * np.mean(errors / test_labels)
    accuracy = 100 - mape

    print('平均气温误差.',np.mean(errors))
    print('Accuracy = {:0.2f}%.'.format(accuracy))

 base_model = RandomForestRegressor( random_state = 42)
base_model.fit(train_features, train_labels)
evaluate(base_model, test_features, test_labels)

老模型

新配方(最好的参数) 

best_random = rf_random.best_estimator_
evaluate(best_random, test_features, test_labels)

 

Grid Search ,之前不是找到差不多的方案了嘛,再来微调!

可以看到模型的效果提升了一些,但是这已经是上限了嘛?还有没有可以进步的空间了呢?接下来我们又要介绍下位参选选手了:GridSearchCV(),它的意思是进行网络搜索,说白了就是一个一个的遍历,就像我们之前说的组合有多少种,就全部走一遍,其所需的参数都是类似的,没记住的话赶紧先翻一遍API文档:

from sklearn.model_selection import GridSearchCV

# 网络搜索
param_grid = {
    'bootstrap': [True],
    'max_depth': [8,10,12],
    'max_features': ['auto'],
    'min_samples_leaf': [2,3, 4, 5,6],
    'min_samples_split': [3, 5, 7],
    'n_estimators': [800, 900, 1000, 1200]
}

# 选择基本算法模型
rf = RandomForestRegressor()

# 网络搜索
grid_search = GridSearchCV(estimator = rf, param_grid = param_grid,
                           scoring = 'neg_mean_absolute_error', cv = 3,
                           n_jobs = -1, verbose = 2)

# 执行搜索
grid_search.fit(train_features, train_labels)

grid_search.best_params_

best_grid = grid_search.best_estimator_
evaluate(best_grid, test_features, test_labels)

 

经过了再调整之后我们的算法模型效果又有了一点提升,虽然只是一小点,但是把每一小步累计在一次就是一个大成绩了。再用网络搜索的时候,遍历的次数太多,我们通常并不把所有的可能性都放进去,而是分成不同的组来分别执行,下面我们再来看看另外一组网络搜索的参赛选手:

param_grid = {
    'bootstrap': [True],
    'max_depth': [12, 15, None],
    'max_features': [3, 4,'auto'],
    'min_samples_leaf': [5, 6, 7],
    'min_samples_split': [7,10,13],
    'n_estimators': [900, 1000, 1200]
}

# 选择算法模型
rf = RandomForestRegressor()

# 继续寻找
grid_search_ad = GridSearchCV(estimator = rf, param_grid = param_grid,
                           scoring = 'neg_mean_absolute_error', cv = 3,
                           n_jobs = -1, verbose = 2)

grid_search_ad.fit(train_features, train_labels)

grid_search_ad.best_params_

best_grid_ad = grid_search_ad.best_estimator_
evaluate(best_grid_ad, test_features, test_labels)

 

 

看起来第二组选手要比第一组强一些,经过了这一番折腾之后我们可以把最终选定的所有参数都列出来了,93.82%相当于我们到此最优的一个结果了

最终模型

print('最终模型参数:\n')
pprint(best_grid_ad.get_params())

 

来总结一下我们的调参任务吧:

  • 1.参数空间是非常重要的,它会对结果产生决定性影响,所以在开始任务之前,得选择大致一个合适区间,可以参考一些相同任务论文的经验值。
  • 2.随机搜索可以更节约时间,尤其是在任务开始阶段,我们并不知道哪一个参数在哪一个位置效果能更好,这样我们可以把参数间隔设置的更大一些,先用随机搜索确定一些大致位置。
  • 3.网络搜索相当于地毯式搜索了,当我们得到了大致位置之后,想在这里寻找到最优参数的时候就派上用场了,可以把随机和网络搜索当做一套组合拳,搭配使用。
  • 4.最后调参的方法其实还有很多的,比如贝叶斯优化,这个还是蛮有意思的,跟大家简单说一下,想一想我们之前的调参方式,是不是每一个都是独立的进行不会对之后的结果产生任何影响,贝叶斯优化的基本思想在于每一个优化都是在不断积累经验,这样我会慢慢得到最终的解应当在的位置,相当于前一步结果会对后面产生影响了,如果大家对贝叶斯优化感兴趣,可以参考下Hyperopt工具包,用起来也很简便:
  • 2
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值