何为全景拼接
将两幅或多幅具有重叠区域的图像,合并成一张大图
→基础流程:
- 针对某个场景拍摄多张/序列图像
- 计算第二张图像与第一张图像之间的变换关系 (sift匹配)
- 将第二张图像叠加到第一张图像的坐标系中 (图像映射)
- 变换后的融合/合成
- 在多图场景中,重复上述过
总结起来就是 特征点的提取与匹配、图像配准、图像融合。
sift匹配
利用Sift提取图像的局部特征,在尺度空间寻找极值点,并提取出其位置、尺度、方向信息。
具体步骤可以参考之前的博文:
https://blog.csdn.net/weixin_44059188/article/details/90698704
图像配准
图片匹配就是找到图像之间所有重叠的部分,将其拼接后就能得到一幅全景图
它是一种确定待拼接图像间的重叠区域以及重叠位置的技术,是整个图像拼接的核心
本文采用的是基于特征点的图像配准方法,即通过匹配点对构建图像序列之间的变换矩阵,从而完成全景图像的拼接
RANSAC算法
首先随机地选择两个点,用两个点确定一条直线,称在这条直线一定范围内的点为这条直线的支撑。这样的随机选择重复数次,然后,具有最大支撑集的直线被确认为是样本点集的拟合。在拟合的误差距离范围内的点被认为是