计算机视觉ch3 图像到图像映射——全景拼接

本文介绍了全景拼接的基本流程,包括SIFT特征点匹配、图像配准和Python实现。通过SIFT算法提取图像局部特征,进行图像配准,使用RANSAC算法处理异常值,构建单应性变换实现图像融合。实验证明,特征点匹配的数量和质量直接影响拼接效果,而图像像素值的适中选择有助于提高效率和结果质量。
摘要由CSDN通过智能技术生成

何为全景拼接

将两幅或多幅具有重叠区域的图像,合并成一张大图
→基础流程:

  1. 针对某个场景拍摄多张/序列图像
  2. 计算第二张图像与第一张图像之间的变换关系 (sift匹配)
  3. 将第二张图像叠加到第一张图像的坐标系中 (图像映射)
  4. 变换后的融合/合成
  5. 在多图场景中,重复上述过
    总结起来就是 特征点的提取与匹配、图像配准、图像融合。

sift匹配

利用Sift提取图像的局部特征,在尺度空间寻找极值点,并提取出其位置、尺度、方向信息。
具体步骤可以参考之前的博文:

https://blog.csdn.net/weixin_44059188/article/details/90698704

图像配准

图片匹配就是找到图像之间所有重叠的部分,将其拼接后就能得到一幅全景图
它是一种确定待拼接图像间的重叠区域以及重叠位置的技术,是整个图像拼接的核心
本文采用的是基于特征点的图像配准方法,即通过匹配点对构建图像序列之间的变换矩阵,从而完成全景图像的拼接
RANSAC算法
首先随机地选择两个点,用两个点确定一条直线,称在这条直线一定范围内的点为这条直线的支撑。这样的随机选择重复数次,然后,具有最大支撑集的直线被确认为是样本点集的拟合。在拟合的误差距离范围内的点被认为是

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值