算力介绍
算力即处理器每秒钟可进行的操作次数即OPS(Operations Per Second)
其中对不同数据的操作又分为了不同的算力指标,如FLOPS,OPS等。
不同数据格式
计算机中使用的数据格式分为整数型(int)和浮点型(float)等。
Hash的计算、AES的计算是加密解密性能的比拼,同时加密解密的计算也会受限于带宽和内存(显存大小)。
AES/Hash运算都是int型的,往往需要较高的精度,目前大多会采用int32甚至int64的数据格式,这样可以获得超越FP64的精度,所以int32算力是最为关键的加密解密性能特征。
处理整数型数据的运算速度
处理整数型数据的运算速度单位为OPS
而对于不同精度的整数型数据运算又分为
int16(16-bit integer OPS)16位整数
int32(32-bit integer OPS)32位整数
int64(32-bit integer OPS)64位整数
位数越大代表精度越高
处理浮点型数据的运算速度
处理浮点型数据的运算速度单位为FLOPS
而对于不同精度的浮点型数据运算又分为
FP64(double-precision FLOPS)双精度浮点运算速度:适用于大多科学计算的数据格式
FP32(single-precision FLOPS)单精度浮点运算速度 :适用于大多数图像视频游戏处理
FP16半精度浮点数
格式换算
FLOPS换算
一个MFLOPS(megaFLOPS)等于每秒一百万(=10^6)次的浮点运算,
1 MFLOPS = 1000000 FLOPS
一个GFLOPS(gigaFLOPS)等于每秒十亿(=10^9)次的浮点运算,
1 GFLOPS = 1000 MFLOPS
一个TFLOPS(teraFLOPS)等于每秒一万亿(=10^12)次的浮点运算,(1太拉)
1 TFLOPS = 1000 GFLOPS (1太拉)
一个PFLOPS(petaFLOPS)等于每秒一千万亿(=10^15)次的浮点运算,
1 PFLOPS = 1000 TFLOPS
OPS格式换算和FLOPS相同
常见处理器算力展示
国产GPU天垓100
3080显卡
英伟达A100
3090显卡