一篇了解算力相关问题

算力介绍

算力即处理器每秒钟可进行的操作次数即OPS(Operations Per Second)
其中对不同数据的操作又分为了不同的算力指标,如FLOPS,OPS等。

不同数据格式

计算机中使用的数据格式分为整数型(int)和浮点型(float)等。

Hash的计算、AES的计算是加密解密性能的比拼,同时加密解密的计算也会受限于带宽和内存(显存大小)。

AES/Hash运算都是int型的,往往需要较高的精度,目前大多会采用int32甚至int64的数据格式,这样可以获得超越FP64的精度,所以int32算力是最为关键的加密解密性能特征。

处理整数型数据的运算速度

处理整数型数据的运算速度单位为OPS
而对于不同精度的整数型数据运算又分为
int16(16-bit integer OPS)16位整数
int32(32-bit integer OPS)32位整数
int64(32-bit integer OPS)64位整数
位数越大代表精度越高

处理浮点型数据的运算速度

处理浮点型数据的运算速度单位为FLOPS
而对于不同精度的浮点型数据运算又分为
FP64(double-precision FLOPS)双精度浮点运算速度:适用于大多科学计算的数据格式
FP32(single-precision FLOPS)单精度浮点运算速度 :适用于大多数图像视频游戏处理
FP16半精度浮点数

格式换算

FLOPS换算
一个MFLOPS(megaFLOPS)等于每秒一百万(=10^6)次的浮点运算,
1 MFLOPS = 1000000 FLOPS

一个GFLOPS(gigaFLOPS)等于每秒十亿(=10^9)次的浮点运算,
1 GFLOPS = 1000 MFLOPS

一个TFLOPS(teraFLOPS)等于每秒一万亿(=10^12)次的浮点运算,(1太拉)
1 TFLOPS = 1000 GFLOPS (1太拉)

一个PFLOPS(petaFLOPS)等于每秒一千万亿(=10^15)次的浮点运算,
1 PFLOPS = 1000 TFLOPS

OPS格式换算和FLOPS相同

常见处理器算力展示

国产GPU天垓100
在这里插入图片描述
3080显卡
在这里插入图片描述
英伟达A100
在这里插入图片描述
3090显卡
在这里插入图片描述

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勇气的动力

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值