复试算法练习Day07——斐波那契数列应用

文章介绍了基于斐波那契数列解决兔子繁殖问题的算法,通过动态规划方法计算第n个月的兔子总数。程序实现包括两个版本,一个是直接使用动态规划数组,另一个是通过自定义函数利用递推关系。时间复杂度为O(n),空间复杂度同样为O(n)。
摘要由CSDN通过智能技术生成

复试算法练习Day07

题目描述

有一种兔子,从出生后第3个月起每个月都生一只兔子,小兔子长到第三个月后每个月又生一只兔子。

例子:假设一只兔子第3个月出生,那么它第5个月开始会每个月生一只兔子。

一月的时候有一只兔子,假如兔子都不死,问第n个月的兔子总数为多少?

数据范围:输入满足 1≤n≤31

题目来源

(https://www.nowcoder.com/practice/1221ec77125d4370833fd3ad5ba72395tpId=37&tqId=21260&rp=1&ru=/exam/oj/ta&qru=/exam/oj/ta&sourceUrl=%2Fexam%2Foj%2Fta%3Fpage%3D1%26tpId%3D37%26type%3D37&difficulty=undefined&judgeStatus=undefined&tags=&title=)

输入描述

输入一个int型整数表示第n个月

输出描述

输出对应的兔子总数

输入:
3
输出:
2

思路

根据兔子出生的规律我们可以看到

第一个月:1对兔子

第二个月:1对兔子

第三个月:2对兔子

第四个月:2+1对兔子

第五个月:3+2对兔子

第六个月:5+3对兔子

由此可以归纳出来除了前两个月,后面的月份的兔子的个数都是前两个月的兔子的总和,符合斐波那契数列,即f(n) = f(n-1)+f(n-2)。

由此可以采用动态规划,把除一二月份的兔子总数之外,将前两个月份的兔子数量相加就是后面的月份兔子总数rm[i]=rm[i−1]+rm[i−2]

具体实现

//利用斐波那契数列实现统计每个月兔子总数
#include<iostream>
#include<vector>
//初始化
using namespace std;
 
int main(){
    //兔子数量初始化
    int n;
    //动态遍历rm数组一次,设置动态规划数组rm长度为n
    //执行n次即可得到那个月后兔子总数结果
    while (cin >>n){
        vector<int> rm(n+1);
        rm[1]= 1;
        rm[2]= 1;
        //递归方程为rm[i]=rm[i−1]+rm[i−2]
        for(int i = 3; i<=n; ++i){
            rm[i] = rm[i-1] + rm[i-2];
        }
        cout << rm[n] << endl;
    }
    return 0;
}
//这道题是斐波那契数列的生活应用
//可以将第n个月的兔子数可分为两部分:
// 1.上个月已经有的兔子数为f(n-1)
// 2.新生的兔子数,即在第n月时已经满三个月的兔子数为f(n-2)

#include <iostream>
using namespace std;

//通过建立getNum()函数
//利用斐波那契数列的递推则可以给出兔子总数
int getNum(int n)
{
	int ret,f1 = 1, f2 = 1; //前两个月都是一只
	for (int i = 3; i <= n;++i) //从第三个月开始到第n月
	{
		ret = f1 + f2;
		f1 = f2;
		f2 = ret;
	}
	return ret;
}

int main()
{
	int n;
	while (cin >> n)
		cout << getNum(n) << endl;
	return 0;
}

时间、空间复杂度

由于直接遍历了rm数组一次,时间复杂度为O(n),在设计动态规划得到时候,采用的辅助数组rm的长度为n,因此其空间复杂度为O(n)

小结

通过采用动态规划,对于需要输出的兔子总数进行总结归纳,采用斐波那契数列的递推公式的设计,通过建立动态规划辅助数组可以很好的利用斐波那契数列,从而给出算法的结果,很大方面提高了计算的效率,对于设计与处理生活问题有很好的借鉴。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值