题目背景
栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表。

栈有两种最重要的操作,即 pop(从栈顶弹出一个元素)和 push(将一个元素进栈)。

栈的重要性不言自明,任何一门数据结构的课程都会介绍栈。宁宁同学在复习栈的基本概念时,想到了一个书上没有讲过的问题,而他自己无法给出答案,所以需要你的帮忙。

题目描述
在这里插入图片描述

宁宁考虑的是这样一个问题:一个操作数序列,1,2,\ldots ,n1,2,…,n(图示为 1 到 3 的情况),栈 A 的深度大于 nn。

现在可以进行两种操作,

将一个数,从操作数序列的头端移到栈的头端(对应数据结构栈的 push 操作)
将一个数,从栈的头端移到输出序列的尾端(对应数据结构栈的 pop 操作)
使用这两种操作,由一个操作数序列就可以得到一系列的输出序列,下图所示为由 1 2 3 生成序列 2 3 1 的过程。
在这里插入图片描述

(原始状态如上图所示)

你的程序将对给定的 nn,计算并输出由操作数序列 1,2,\ldots,n1,2,…,n 经过操作可能得到的输出序列的总数。

输入格式
输入文件只含一个整数 nn(1 \leq n \leq 181≤n≤18)。

输出格式
输出文件只有一行,即可能输出序列的总数目。

输入输出样例
输入 #1
3
输出 #1
5

> 这道题可以用dfs,不过会超时一个点。所以用带备忘录的dfs就好了。也可以用dp做也可以,不过过程可能比dfs要难那么一点点,还可以用卡特兰来做(这里介绍这三种方法,我只会这三种(逃)。
*先来看看卡特兰吧,看到题目可以给出了。定义 f[i]表示i个数的所有可能性,f[0]=1,f[1]=1,假设X为最后一个出栈的元素,那么在这之前有n-X个元素比X大,有X-1个元素比X小,这两部分又相互影响,所以最后一个元素出栈为X的全部可能性是f[n-X]f[X-1],X的取值为1—n都有可能,所以X为1—n的所有情况相加即可:
f(n)=f(0)*f(n-1)+f(1)*f(n-2)+f(2)*f(n-3)+f(3)*f(n-4)+…f(n-1)*f(0)

这就是卡特兰,有了这个代码就很好写了,递推即可

#include <iostream>
#include <cstring>
using namespace std;

int ktl(int n);//卡特兰


    int main()
    {
      
        int n;
        cin>>n;
        cout<<ktl(n);
        return 0;
    }



 
    int ktl(int n) //卡特兰
    {
        int t[30];
        memset(t,0, sizeof(t));
        t[1]=t[0]=1;
        //t[2]=t[0]*t[1]+t[1]*t[0]
        //t[3]=t[0]*t[2]+t[1]*t[1]+t[2]*t[0]
        //t[4]=t[0]*t[3]+t[1]*t[2]+t[2]*t[1]+t[3]*t[0]

        for(int i=2;i<=n;i++)
        {
            for(int j=0;j<i;j++) //递推计算出每一t[i]  因为计算t[i+1]需要用到t[i]
            {
                t[i]=t[i]+t[j]*t[i-j-1];
            }
        }
        return t[n];
    }
    

**再来看一下dfs 用f[i][j]表示栈里面有i个元素,队列里面有j个元素时的所有可能情况数,即f[0][30]
就是我们要求解的值。
如果队列为空,那么直接return 1;因为此时只能从栈里面将元素顺序弹出。
如果队列不为空,那么,如果此时栈为空:即:
f[i][j]=f[i+1][j-1] //即栈里面加一个元素,队列减去一个元素
如果栈为空:f[i][j]=f[i-1][j]+f[i+1][j-1] //即栈弹出一个元素,或者队列弹一个元素进栈
注意:这道题纯dfs会wa一个点,所以建一个备忘录数组

#include <iostream>
#include <cstring>
using namespace std;
int f(int i,int j);//dfs

    int main()
    {
        memset(memory,0,sizeof(memory));
        int n;
        cin>>n;
        cout<<f(0,n);
        return 0;
    }



    int f(int i,int j) //dfs
    {

        if(j==0) //如果对列为空
        {
            return 1;
        }
        if(memory[i][j]!=0)
        {
            return memory[i][j];
        }
        if(i==0)
        {
            return memory[i][j]=f(i+1,j-1);
        }
        if(i!=0)
        {
            return memory[i][j]=f(i+1,j-1)+f(i-1,j);
        }
    }

第三个就轮到我们的大哥dp登场了,有了刚才dfs的推导,dp理解起来会简单很多。
设置 dp[i][j]为当栈里面有i个元素,队列里面有j个元素时的所有情况,即dp[0][n]就是我们要求得值
那么显然可以得到当j==0时 dp[i][j]=1
当i==0时,dp[i][j]=dp[i+1][j-1]//此时栈内为空,必须从队列中取出一个元素入栈,当i!=0时dp[i][j]=dp[i-1][j]+dp[i+1][j-1]//从栈顶弹出一个元素或者入栈一个元素,这个就是动态转移方程 他的边界就是当j=0时dp[i][j]==1

怎么合理的取递推也是动态转移方程能否求出的核心,可以这样试一下,首先初始化dp[1][0]=1,dp[2][0]=1,dp[3][0]=1…dp[n][0]=1,然后再去想办法递推,当j不变时 ,i从0-- 递增至n的结果如下:

dp[0][1]=dp[1][0],dp[0][2]=dp[1][1]//但是此时dp[1][1]并没有求出,根据方程式dp[i][j]=dp[i-1][j]+dp[i+1][j-1]可知dp[i+1][j]=dp[i][j]+dp[i+2][j-1],故换一种方式来递推,j固定时,i从0递增至n,代码如下:

#include <iostream>
#include <cstring>
using namespace std;
int dy(int n);
    int main()
    {

        int n;
        cin>>n;
        //cout<<f(0,n);
        //cout<<ktl(n);
        cout<<dy(n);
        return 0;
    }



    int dy(int n)
    {
        int dp[20][20];
        memset(dp,0, sizeof(dp));
        for(int i=0;i<=20;i++)
        {
            dp[i][0]=1;//队列元素个数为0的时候就是1
        }
        for(int j=1;j<=n;j++)
        {
            for(int i=0;i<=n;i++)
            {
                if(i==0)
                {
                    dp[i][j]=dp[i+1][j-1];
                } else
                {
                    dp[i][j]=dp[i+1][j-1]+dp[i-1][j];
                }
                if(j==n)
                {
                    break;
                }
            }
        }
        return dp[0][n];
    }





  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值