python爬取豆瓣电影排行榜前250名

爬取豆瓣电影排行榜

  1. 选择页面
    首先,我们打开豆瓣的电影排行榜的页面。网页链接:双击跳转

2. 页面分析
接下来,我们要在这个页面提取每一部电影的详情节链接,总页码数,每一部电影的短评。
我们先来提取电影详情页的链接。

# 获取豆瓣top250每个页面下的电影豆瓣链接列表
        movies_link_list = html.xpath('//li//div[@class="info"]/div[@class="hd"]/a/@href')

提取导航页的每一部电影的短评。

`# 获取每个页面下的电影的代表影评
        movies_quote_list = html.xpath('//p[@class="quote"]/span[@class="inq"]/text()')`

提取电影排行榜的总页数

`total_page_num = int(html.xpath('string(//span[@class="next"]/preceding-sibling::a[1])'))`

下面,我们提取每一部电影的详细信息。

在这里插入图片描述 我们提取的信息包括上图中的电影排名、名称、链接、评分、评价人数以及各个星级的评价人数,还有电影的导演,编剧、主演、类型、制片国家/地区、语言、上映日期、片长、又名和IMDb链接。代码如下:

				# 获取电影排名
                movie_rank = r'电影排名:{}'.format(html.xpath('string(//div[@class="top250"]/span[@class="top250-no"])'))
                # 获取电影名称
                movie_name = r'电影名称:{}'.format(html.xpath('string(//span[@property="v:itemreviewed"])'))
                # 获取电影链接
                movie_link = r'电影链接:{}'.format(movie_link)
                # 获取电影评分
            
Python编程爬取豆瓣电影排行榜Top250通常需要使用到一些网络请求库(如requests)、HTML解析库(如BeautifulSoup或lxml),以及可能的数据存储工具(如Pandas)。以下是一个简单的步骤概述: 1. **导入库**: 首先安装必要的库,如果尚未安装,可以使用pip命令: ```bash pip install requests beautifulsoup4 pandas ``` 2. **发送请求**: 使用requests库向豆瓣电影的API(实际上豆瓣没有提供直接的API,我们通常会抓取网页)发送GET请求获取页面内容: ```python url = 'https://movie.douban.com/top250' response = requests.get(url) ``` 3. **解析HTML**: 使用BeautifulSoup解析返回的HTML数据,找到包含电影信息的部分: ```python soup = BeautifulSoup(response.text, 'html.parser') movies = soup.find_all('div', class_='hd') # 查找电影标题所在的元素 ``` 4. **提取信息**: 从每个电影元素中提取电影称、评分等信息。由于豆瓣的网页结构可能会有所变化,你需要查看并定位到正确的CSS选择器或XPath表达式: ```python data = [] for movie in movies: title = movie.find('span', class_='title').text rating = movie.find('span', class_='rating_num').text # ... 其他信息处理 data.append((title, rating)) ``` 5. **数据存储**: 将收集的信息存储到Pandas DataFrame或直接保存到CSV文件中: ```python df = pd.DataFrame(data, columns=['电影', '评分']) df.to_csv('douban_movie_top250.csv', index=False) ``` 6. **异常处理**: 考虑到网络连接问题、网站反爬机制等因素,记得添加适当的错误处理和延迟加载策略。 7. **遵守政策**: 爬虫操作时需遵守豆瓣网站的robots.txt协议,并尊重其爬虫规则,不要过于频繁以免对服务器造成压力。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值