Fibonacci again and again HDU - 1848 (博弈)

任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的:
F(1)=1;
F(2)=2;
F(n)=F(n-1)+F(n-2)(n>=3);
所以,1,2,3,5,8,13……就是菲波那契数列。
在HDOJ上有不少相关的题目,比如1005 Fibonacci again就是曾经的浙江省赛题。
今天,又一个关于Fibonacci的题目出现了,它是一个小游戏,定义如下:
1、  这是一个二人游戏;
2、  一共有3堆石子,数量分别是m, n, p个;
3、  两人轮流走;
4、  每走一步可以选择任意一堆石子,然后取走f个;
5、  f只能是菲波那契数列中的元素(即每次只能取1,2,3,5,8…等数量);
6、  最先取光所有石子的人为胜者;
假设双方都使用最优策略,请判断先手的人会赢还是后手的人会赢。

Input

输入数据包含多个测试用例,每个测试用例占一行,包含3个整数m,n,p(1<=m,n,p<=1000)。
m=n=p=0则表示输入结束。

Output

如果先手的人能赢,请输出“Fibo”,否则请输出“Nacci”,每个实例的输出占一行。

Sample Input

1 1 1
1 4 1
0 0 0

Sample Output

Fibo
Nacci

题意与解析:像是nim游戏,这里需要用到sg定理;

sg定理详解:https://blog.csdn.net/bestsort/article/details/88197959

代码如下:

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<map>
#include<math.h>
#include<vector>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
#define ll long long
int n,m,p;/**SG定理**/
int f[1020],book[21],sg[1001];
void Fib()
{
    f[1]=1;
    f[2]=2;
    for(int i=3; i<=20; i++)//先打表处理出菲波那契数列
        f[i]=f[i-1]+f[i-2];
    for(int i=1; i<=1000; i++)
    {
        memset(book,false,sizeof(book));//book数组用来记录出现过的非负整数
        for(int j=1; j<=20; j++)
            if(f[j]<=i)
                book[sg[i-f[j]]]=true;
            else
                break;
        for(int j=0; j<=10; j++)//寻找最小非负整数
            if(!book[j])
            {
                sg[i]=j;
                break;
            }
    }
}
int main()
{
    Fib();
    scanf("%d%d%d",&n,&m,&p);
    while(n!=0&&m!=0&&p!=0)
    {
        int ans=sg[n]^sg[m];
        ans^=sg[p];
        if(ans==0)
            printf("Nacci\n");
        else
            printf("Fibo\n");
        scanf("%d %d %d",&n,&m,&p);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值