EASYTOOL: Enhancing LLM-based Agents with Concise Tool Instruction

EASYTOOL是一种方法,通过将工具文档转化为结构化的工具指令,增强基于LLM(大型语言模型)代理的工具利用能力,特别是针对ChatGPT等黑盒模型。它解决了文档格式不一致、冗余和不完整的问题,提高了工具描述质量和场景生成的合理性。在多个数据集和应用中,EASYTOOL显示出改善工具利用率、选择正确解决方案路径和降低错误率的效果。
摘要由CSDN通过智能技术生成

通过简洁的工具说明增强基于 LLM 的代理

摘要:

  • 代码: https://github.com/microsoft/JARVIS/

  • 通过将工具文档简化并细化为清晰、结构化和实用的工具指令,来增强基于 LLM 的代理的工具利用能力

  • EASYTOOL 从不同来源的广泛工具文档中纯化基本信息,制定统一的工具指令,为基于 LLM 的代理提供标准化的工具描述和功能

介绍

  • 为了补足LLM和tool之间的gap,Agent会先分析任务需求、做规划,再调用工具。

  • 先前已经有研究做微调补足这个gap,但是不适用于黑盒LLM,例如chatgpt,而且微调缺乏即插即用的灵活性

  • 现有工具文档阻碍LLM利用工具的问题:

    • 格式不一致

    • 信息冗余,会过度消耗token

    • 文档有时缺失完整信息

  • 流程概述

    • 将文档转换为标准文档(工具指令),达到统一格式并去除冗余的目的;最终LLM使用工具指令

  • easytool可以即插即用

方法

预备解释

<
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>