一体化的数据治理和共享平台建设方案:建立企业级的、一体化的数据治理和共享平台,确保数据资源中心的数据质量和安全管理。详细功能描述可以参照数据治理平台工具前世今生。基于Spring boot框架

一体化的数据治理和共享平台建设方案

一体化的数据治理和共享平台建设方案

  • 项目背景和目标
    • 项目背景
    • 项目目标
    • 数据治理和共享平台重要性
  • 总体架构设计
    • 架构图及说明
    • 技术选型及原因
    • 关键组件介绍
  • 数据治理功能实现
    • 数据采集与整合策略
    • 数据清洗与转换方法
    • 数据质量评估及保障措施
  • 共享平台功能实现
    • 数据目录构建与管理
    • 数据服务接口设计与开发
    • 数据安全访问控制策略
  • 基于Spring Cloud微服务解决方案
    • 微服务架构优势分析
    • Eureka服务注册与发现机制
    • Zuul路由网关应用
    • Feign声明式HTTP客户端使用
    • Ribbon客户端负载均衡策略
  • 前端页面应用服务前后端分离实践
    • 前后端分离架构设计思路
    • 前端页面技术选型及原因
    • 前后端交互方式选择及优化建议
  • 平台测试、部署与维护方案
    • 测试策略及测试用例设计
    • 部署环境搭建步骤说明
    • 后期维护计划制定
  • 总结回顾与未来发展规划
    • 项目成果总结回顾
    • 经验教训分享
    • 未来发展趋势预测

 

第1张

大家好!我今天要介绍的主题是:一体化的数据治理和共享平台建设方案

第2张

我们今天主要从以下几个方面展开介绍:

项目背景和目标

总体架构设计

数据治理功能实现

共享平台功能实现

基于Spring Cloud微服务解决方案

前端页面应用服务前后端分离实践

平台测试、部署与维护方案

总结回顾与未来发展规划

第3张

下面介绍项目背景和目标。

第4张

但这也带来了一个问题,那就是数据孤岛现象十分严重。由于缺乏统一的数据管理和共享机制,导致企业内部的数据无法充分发挥其价值。而现在,业务需求正在驱动我们寻找解决方案。企业需要更高效、更准确地利用数据来支持业务决策和运营优化。因此,我们需要一个一体化的数据治理和共享平台建设方案,来打破数据孤岛,实现数据的统一管理和共享,从而充分发挥数据的价值,为企业的业务发展提供有力支持。

第5张

首先,我们的目标是要构建一个一体化的数据治理体系。这意味着我们要制定统一的数据管理标准、流程和政策,从而确保数据的准确性、一致性和安全性。这样,我们就能够避免因为数据不一致、不准确而带来的各种问题。

其次,我们要打破数据孤岛。大家可能都知道,在我们的日常工作中,不同部门、不同系统之间的数据往往都是孤立的,无法共享。这不仅导致了数据的浪费,也限制了我们的工作效率。因此,我们要实现跨部门、跨系统的数据整合与共享,提高数据的利用效率。

此外,我们还要提升数据质量。数据质量直接影响到我们的决策和业务运营。因此,我们要通过数据清洗、校验和标准化等手段,提高数据质量,为业务应用提供可靠的数据支撑。

最后,这个一体化数据治理和共享平台还要支持我们的业务创新与发展。随着市场的不断变化,我们的业务需求也在不断变化。因此,这个平台要能够提供灵活、可扩展的数据服务,满足我们不断变化的业务需求,支持我们的业务创新与发展。

总的来说,我们的这个一体化数据治理和共享平台建设方案,是为了解决我们当前面临的数据管理问题,提升数据质量,支持业务创新与发展。我们期待通过这个平台,能够更好地服务于我们的业务,推动我们的业务发展。

第6张

在数字化时代,数据已经成为企业运营和决策的核心要素。因此,我们提出这个方案,旨在通过有效管理和利用数据,进一步提升企业的核心竞争力。

首先,通过数据治理和共享,我们可以将分散的数据整合起来,形成企业的核心资产。这样不仅能提升企业的核心竞争力,还能更好地满足客户需求,提升服务质量。

其次,数据治理和共享还能降低企业的运营成本。通过减少重复劳动和数据冗余,我们可以节省大量的人力和物力资源,从而提高企业的整体运营效率。

再者,准确的数据支持对于企业的决策至关重要。通过一体化数据治理和共享平台,我们可以为决策者提供及时、准确的数据支持,帮助他们做出更加明智和高效的决策。

最后,数据治理和共享还能促进企业内部各部门的协同合作。通过加强数据共享和协作,我们可以推动业务流程的优化和协同,进一步提高企业的整体运营效果。

总之,一体化数据治理和共享平台建设方案对于企业的发展至关重要。通过有效管理和利用数据,我们不仅可以提升企业的核心竞争力,还能降低运营成本,提高决策效率,促进业务协同。希望这个方案能引起大家的重视,共同推动企业的数字化转型进程。

第7张

下面介绍总体架构设计。

第8张

首先,我们来看一下这个架构图。这个架构图非常清晰地展示了平台的各个层级结构,包括数据源层、数据处理层、数据服务层和应用层等。那么,这些层级具体是做什么的呢?

数据源层,这是整个平台的基础,它负责收集和整合来自各个业务部门的数据。

接着是数据处理层,它会对这些原始数据进行清洗、整理、分类等操作,确保数据的质量和准确性。

然后是数据服务层,它会为上层应用提供所需的数据服务,包括数据查询、数据分析、数据挖掘等。

最后是应用层,这是平台与用户直接交互的层面,它提供了各种数据应用,如数据可视化、报表生成、决策支持等。

那么,这些层级之间是如何进行数据交互的呢?其实,数据在各个层级之间都是双向流动的。比如,从数据源层到数据处理层,数据会进行清洗和整理;从数据处理层到数据服务层,数据会被封装成各种服务;从数据服务层到应用层,数据会被应用到各种业务场景中。同时,各个层级之间也会有反馈机制,确保数据的质量和准确性。

通过这个一体化的数据治理和共享平台建设方案,我们可以实现数据的统一管理和共享,提高数据的使用效率和价值,为企业的业务发展提供有力的支持。

第9张

我们需要选择那些成熟、稳定、可扩展的技术栈,比如Hadoop、Spark等大数据处理框架,以及MySQL、Oracle等关系型数据库。这些技术经过了市场的检验,有着广泛的应用和稳定的性能表现,能够满足我们平台高性能、高可用性、高扩展性等要求。同时,我们还需要考虑与现有系统的兼容性和集成成本,避免因为技术不兼容或者集成成本过高导致项目实施受阻。

这样的技术选型,不仅能够帮助我们快速构建出稳定、高效的数据治理和共享平台,还能够降低后期维护和升级的成本,让我们的平台能够更好地服务于业务发展,为企业的数字化转型提供有力支撑。

第10张

首先,我们要提到的是数据采集组件。这个组件的任务是从各种数据源中实时或批量地采集数据,无论是哪种类型或格式的数据,它都能轻松应对。

接下来是数据处理组件。你可能会遇到一些原始数据不够整齐或符合标准的情况,这时候就需要这个组件大展身手了。它负责数据清洗、转换、聚合等工作,确保我们得到的数据质量上乘,满足各种业务需求。

然后,我们要考虑数据存储的问题。数据存储组件能够应对结构化、非结构化、半结构化等多种数据类型,提供稳定、可靠、可扩展的存储服务。不管你的数据量有多大,它都能应对自如。

最后,但同样重要的是数据安全组件。这个组件负责保护我们的数据安全,提供数据加密、访问控制、审计日志等功能,确保数据的安全性和隐私得到妥善保护。

总的来说,这四个关键组件共同构成了一个完整、高效、安全的数据治理和共享平台,为我们提供了强大的数据支持和服务。

第11张

下面介绍数据治理功能实现。

第12张

这套标准要明确数据采集的范围、格式和质量要求,确保我们采集到的数据是准确、完整和可靠的。接下来,我们要搭建一个数据采集平台,实现自动化、实时化的数据采集过程,提高数据采集的效率和准确性。同时,我们还将采用ETL工具进行数据抽取、转换和加载,确保数据的准确性和一致性。最后,我们要整合多个数据源的数据,消除数据孤岛,形成统一的数据视图,为后续的数据分析和应用提供有力的支持。通过这一系列的措施,我们将能够构建一个高效、稳定、可靠的数据治理和共享平台,为企业的数字化转型提供有力的支撑。

第13张

首先,我们得制定好数据清洗的规则和流程,把异常值、缺失值和重复值这些“捣乱分子”找出来并处理好。其次,数据转换技术也不能少,它能让数据从一种格式或结构变身为另一种格式或结构,方便我们进行后续的处理和分析。同时,数据映射和匹配算法也得跟上,它们能帮助我们实现不同数据源之间的数据关联和匹配,让数据之间的联系更加紧密。最后,数据挖掘和机器学习技术也能发挥大作用,它们能挖掘出数据中的隐藏信息和模式,为我们提供更深入的洞察和预测。通过这些手段,我们就能实现数据的精准治理和高效共享,为业务的发展提供有力的支持。

第14张

接下来,我想和大家分享一下关于一体化的数据治理和共享平台建设方案中,数据质量评估及保障措施的相关内容。为了确保我们的数据质量高、准确、可靠,我们需要先制定一套数据质量评估指标和标准。这就像是给数据做体检,通过全面、客观的评估,了解数据的健康状况。其次,我们可以利用数据剖析和可视化工具,把数据质量问题和分布情况直观地展示出来,就像是给数据拍X光片,帮助我们发现隐藏在数据背后的问题。然后,建立一个数据质量监控和预警机制,一旦发现数据质量有问题,就能及时进行处理,确保数据的准确性。最后,制定数据质量保障措施和流程,这就像是给数据制定健身计划,通过持续的改进和提升,确保数据的质量始终保持在最佳状态。这样,我们才能构建一个高效、可靠的数据治理和共享平台,为各行业的发展提供有力支持。

第15张

下面介绍共享平台功能实现。

第16张

这涉及到对各类数据资源的细致梳理,将它们有序地分类并整合到一个清晰的数据资源目录中。这样一来,用户就能够轻松地查找和使用这些数据资源了。

接下来,元数据管理也是至关重要的一环。通过建立元数据管理标准,我们能够全面描述数据资源的属性、关系、约束等信息,这不仅有助于提高数据的质量,还能够提升数据管理的效率。

当然,数据目录并不是一成不变的。为了确保数据的准确性和时效性,我们需要定期更新数据目录,并及时提供数据目录的维护功能。这样,用户就可以根据自己的需求进行自定义管理,让数据治理和共享平台更加贴近实际需求。

第17张

首先,我们需要遵循通用的数据服务接口标准,比如RESTful API,这样才能确保接口的通用性和易用性。无论是谁使用这个接口,都能够快速上手,无障碍地进行数据交互。

但是,仅有通用性是不够的,我们还必须关注接口的安全性。通过加密、认证、授权等安全措施,我们可以确保数据在传输和使用过程中的安全,避免数据泄露和非法访问。

同时,性能优化也不能忽视。针对大数据量和高并发场景,我们需要对接口进行性能优化,提高数据访问速度和稳定性。这样,无论数据量多大,无论并发请求多高,我们的平台都能够稳定、快速地响应,为用户提供优质的服务。

总的来说,数据服务接口的设计与开发是数据治理和共享平台建设的核心环节,我们必须注重接口的通用性、安全性和性能优化,以确保平台的高效、稳定运行。

第18张

为了实现这一目标,我们需要采取一系列的安全措施。首先,我们要建立用户身份认证机制,对用户进行身份核实,确保只有经过授权的用户才能访问数据资源。同时,我们还要根据用户的角色和权限进行细致的授权访问控制,防止数据被非法获取或滥用。

其次,为了保障数据的安全性,我们需要对敏感数据进行脱敏处理,以避免数据泄露的风险。同时,对于重要数据,我们必须进行加密存储和传输,确保数据的机密性和完整性。

最后,我们还要对数据进行审计和监控,记录用户的访问操作和行为,以便于事后追溯和定责。这不仅可以提高数据的安全性,还可以帮助我们及时发现和处理潜在的安全风险。通过这些措施,我们将能够构建一个安全、高效的数据治理和共享平台,为组织的业务发展提供有力支持。

第19张

下面介绍基于SpringCloud微服务解决方案。

第20张

微服务架构有很多优势,让我给大家详细介绍一下。

首先,微服务架构具有独立性。每个微服务都是独立部署的,它们之间互不影响,这就大大提高了系统的可靠性和稳定性。想象一下,如果其中一个服务出了问题,其他服务依然可以正常运行,不会受到任何影响。

其次,微服务架构具有可扩展性。这意味着我们可以根据业务需求灵活地增加或减少服务实例。当业务需求增加时,我们可以快速地增加服务实例来满足需求;当业务需求减少时,我们可以减少服务实例来降低成本。

再次,微服务架构易于维护。通过将复杂系统拆分成多个小型服务,我们降低了维护难度和成本。每个服务都相对独立,可以独立地进行开发、测试和部署,这使得维护变得更加简单和高效。

最后,微服务架构还具有技术多样性。每个微服务可以采用不同的技术栈,这充分发挥了各种技术的优势。我们可以根据业务需求选择最适合的技术来实现每个服务,从而获得最佳的性能和效率。

总之,基于微服务架构的一体化数据治理和共享平台建设方案具有很多优势,包括独立性、可扩展性、易于维护和技术多样性等。这种方案能够帮助我们更好地管理和共享数据,提高业务效率和降低成本。

第21张

当我们谈论一体化的数据治理和共享平台建设时,Eureka服务注册与发现机制无疑是其中关键的一环。想象一下,每个微服务就像是网络中的一个小节点,它们需要互相找到彼此,以便协同工作。这就是Eureka要做的事情。

当微服务启动时,它会将自己的信息,比如服务名称、IP地址、端口号等,告诉Eureka Server,就像新生入学时需要注册一样。这样,Eureka Server就掌握了所有微服务的“名单”。

客户端需要调用服务时,它会向Eureka Server查询所需服务的信息,就像是问:“请问数学系的教室在哪里?”Eureka Server就会告诉它:“哦,数学系的教室在那栋楼的三楼。”这样,客户端就能动态地找到并调用所需的服务了。

为了确保服务能够正常运行,Eureka Server还会定期检查已注册服务的健康状态,这就像学校定期检查学生的出勤情况一样。如果发现有服务“生病”或“缺勤”,Eureka Server会及时采取措施,确保服务的可用性。

最后,Eureka客户端还内置了负载均衡机制,这就像学校食堂的分餐制度,能够自动分配请求到不同的服务实例,确保每个服务都能够得到合理的利用,提高整个系统的稳定性和效率。

第22张

各位朋友,现在我要为大家介绍一下一体化的数据治理和共享平台建设方案中的Zuul路由网关应用。这个应用是一个非常重要的组件,它可以帮助我们更好地管理和使用微服务架构。首先,Zuul能够接收客户端的请求,并根据配置将请求转发到相应的微服务。这就像一个智能的交通指挥员,确保每个请求都能到达正确的目的地。其次,Zuul还支持自定义过滤器,可以实现身份验证、限流、熔断等功能。这就像是一道安全屏障,保护我们的系统免受恶意攻击和滥用。同时,结合Ribbon使用,Zuul还能实现客户端负载均衡,确保系统的稳定性和可靠性。最后,Zuul还提供了监控和安全管理功能,我们可以实时了解系统的运行状态和安全状况,做到防患于未然。总的来说,Zuul路由网关应用是一体化数据治理和共享平台建设方案中不可或缺的一部分,它将为我们的系统提供强大的支持和保障。

第23张

首先,Feign通过注解方式定义HTTP请求,极大地简化了HTTP客户端的编写,让开发者能更专注于业务逻辑的实现,而不用被繁琐的HTTP请求代码所困扰。

其次,Feign内置了Ribbon客户端,这使得它可以自动实现负载均衡。在分布式系统中,负载均衡是非常重要的,它可以有效地分摊请求压力,防止单点故障。

同时,Feign还支持Hystrix熔断器,可以在调用失败时快速失败或降级处理。这是保障系统稳定性和可靠性的重要手段。

最后,Feign还支持自定义配置和扩展,这使得它能够满足各种复杂的业务需求。无论是性能调优,还是功能扩展,Feign都能提供足够的灵活性。

总的来说,Feign作为一个声明式HTTP客户端,不仅简化了开发,还提供了负载均衡、熔断机制等强大的功能,同时保持了高度的可扩展性,是构建一体化数据治理和共享平台的重要工具。

第24张

其中,一个关键的技术就是Ribbon客户端负载均衡策略。简单来说,Ribbon就是一个能够智能分发请求的客户端负载均衡器。它能够将请求均匀地分配到多个服务实例上,确保每个服务都能得到合理的负载。而且,Ribbon还提供了多种负载均衡策略,如轮询、随机和加权等,以适应不同的业务场景和需求。当然,在实际应用中,服务实例偶尔也会出现故障或延迟。这时候,Ribbon的容错处理机制就能派上用场了。它可以配置重试机制,当某个服务实例调用失败时,自动切换到其他实例进行重试,确保服务的可用性和稳定性。另外,值得一提的是,Ribbon与Spring Cloud等其他组件的集成非常简单,几乎可以说是无缝的。这意味着,你可以快速地开发和部署微服务应用,提高开发效率和部署速度。总的来说,Ribbon客户端负载均衡策略是一种非常实用的技术,它能够帮助我们实现一体化的数据治理和共享平台建设,为企业的数字化转型提供强大的支持。

第25张

下面介绍前端页面应用服务前后端分离实践。

第26张

首先,我们清晰地划分了前后端的职责。前端主要负责页面的展示和用户交互,而后端则专注于数据处理和业务逻辑。这样的分工让各自的工作更加明确,提高了开发效率。

同时,我们还采用了RESTful API风格,后端提供了统一的API接口,前端通过调用这些接口来获取数据。这种方式使得前后端之间的数据交互更加规范、简洁,也方便了后期的维护和扩展。

此外,我们还引入了前端路由机制。通过根据URL的不同展示不同的页面内容,我们实现了单页面应用。这种设计不仅提高了用户体验,也使得页面跳转更加流畅,减少了不必要的页面刷新和加载时间。

通过前后端分离的设计思路,我们构建了一个高效、稳定、易扩展的一体化的数据治理和共享平台。这个平台不仅满足了业务需求,也提升了用户体验,为我们的业务发展提供了有力的支持。

第27张

我们选择了React/Vue等前端框架,这是因为它们采用了组件化的开发方式,能够大大提高代码的复用率,从而降低维护成本。此外,这些框架还具有丰富的生态系统和社区支持,为开发者提供了丰富的资源和帮助。

在构建工具方面,我们选用了Webpack等工具,它们能够实现前端资源的模块化管理和自动化构建,极大地提高了开发效率。这意味着在开发过程中,我们可以更加专注于实现功能,而不必花费过多时间在繁琐的构建配置上。

同时,我们还采用了ES6+等前端技术,这些现代化的JavaScript语法和特性能够使代码更加简洁、易读和可维护。使用这些技术,我们可以写出更高质量的前端代码,为用户提供更好的体验。

综上所述,通过合理的前端技术选型,我们可以为一体化的数据治理和共享平台建设提供坚实的基础,确保平台的稳定性和可扩展性。

第28张

这里,我给大家分享几个关键的策略。

首先,利用AJAX、Fetch等异步请求技术,我们可以实现前后端的异步通信。这意味着,用户无需等待整个页面刷新,就能获取到需要的数据,极大地提高了用户体验。

其次,前后端统一采用JSON格式进行数据交换。JSON,也就是JavaScript对象表示法,易于解析和处理,这让我们的数据交换变得更加高效。

此外,我们还应该对API接口进行版本控制。随着平台的发展,接口可能会有所变化,通过版本控制,我们可以避免接口变更导致的不兼容问题。

最后,缓存优化也是不可或缺的一部分。前端页面和API接口都需要进行缓存优化,这样可以减少不必要的网络请求,提高页面加载速度。同时,后端也应考虑使用如Redis等缓存技术,以提高数据访问性能。

总的来说,前后端的交互方式选择和优化是我们构建高效、稳定的数据治理和共享平台的关键。希望这些建议能对大家有所帮助。

第29张

下面介绍平台测试部署与维护方案。

第30张

在测试策略方面,我们将综合运用黑盒测试、白盒测试、灰盒测试等多种测试方法,全面检验平台的各项功能和性能。而在测试用例设计方面,我们则会针对平台各项功能设计详细的测试用例,包括正常场景和异常场景,确保测试全面覆盖,不留死角。这样一来,我们就能够在平台建设过程中及时发现问题、解决问题,确保最终交付的产品质量稳定可靠。

第31张

首先,我们要根据平台运行的需求,准备相应的硬件资源,包括服务器、存储设备和网络设备等,确保平台能够稳定、高效地运行。接下来,我们需要搭建软件环境,安装并配置操作系统、数据库和中间件等必要软件,为平台的运行提供坚实的支撑。最后,我们要将平台应用程序部署到目标环境中,确保平台能够顺利上线,为我们的数据治理和共享工作提供强大的支持。在整个过程中,我们都需要注重细节,严格按照部署步骤进行操作,确保每一步都能够顺利完成。只有这样,我们才能打造出一个高效、稳定、安全的一体化数据治理和共享平台,为企业的数字化转型提供有力的支撑。

第32张

首先,我们要定期对平台的硬件、软件和网络环境进行检查,这就像给平台做定期体检,确保它的健康状况良好。其次,数据的安全可靠至关重要,所以我们要制定详细的数据备份和恢复方案,为可能出现的意外情况做好准备。此外,面对突发的平台故障或安全问题,我们需要有应急响应预案,快速响应并处理问题,确保平台尽快恢复正常运行。最后,随着业务的发展和技术的进步,我们还要对平台进行版本更新和升级,让平台的功能更加强大、更加完善。这样,我们的数据治理和共享平台就能更好地服务于我们的工作,为我们的发展提供有力支持。

第33张

下面介绍总结回顾与未来发展规划。

第34张

这意味着,我们已经将来自不同源头的数据进行了整合和清洗,并且制定了统一的数据标准和规范。这不仅极大地提高了数据的质量和可用性,还为后续的数据治理和共享工作打下了坚实的基础。

在数据安全与隐私保护方面,我们建立了一套完善的数据安全管理体系。通过采用先进的加密和脱敏技术,我们有效地保护了用户的隐私和数据安全。这既是对用户权益的尊重,也是对数据治理责任的履行。

为了促进数据的共享与交换,我们成功地搭建了一个数据共享平台。这个平台不仅实现了跨部门、跨机构的数据共享与交换,还大大提高了数据的利用效率。这无疑为我们的数据治理工作注入了新的活力。

最后,我们在数据治理机制建设方面也取得了显著的成果。通过建立数据治理组织、流程和制度,我们明确了数据责任主体和监管职责,从而保障了数据的合规性和规范性。这是我们对数据治理工作的坚定承诺,也是对未来发展的有力保障。

第35张

首先,数据质量是数据治理的核心,但在实际操作中,我们发现部分数据存在质量问题,这对数据整合和共享造成了不小的影响。因此,我们必须加强数据质量管理和校验机制,确保数据的准确性和完整性。

其次,数据安全也是我们必须高度重视的问题。随着数据共享范围的扩大,数据安全风险也随之增加。为了防范和应对安全漏洞,我们需要不断提高员工的安全意识和技能水平,加强安全防范措施和应对能力。

此外,在数据共享过程中,我们还需要进一步优化共享流程和审批机制。通过简化流程、减少环节、提高审批效率,我们可以实现更快速、更便捷的数据共享,更好地满足业务需求。

最后,数据治理是一个持续改进的过程。随着业务的发展和监管要求的变化,我们需要不断完善治理机制和制度体系,确保数据治理和共享平台能够适应新形势下的要求。通过不断地优化和创新,我们可以推动数据治理和共享平台建设的不断进步和发展。

第36张

随着大数据技术的不断创新,我们可以看到,未来的发展趋势将充满无限可能。比如,通过数据挖掘和机器学习等先进技术,我们可以更好地管理和利用数据资源。然而,随着数据量的飞速增长和黑客攻击手段的不断升级,数据安全和隐私保护也面临着前所未有的挑战。为了应对这些挑战,我们需要采取更加有效的技术手段和管理措施。

在数字化转型的大背景下,各部门、各机构之间的数据共享与交换需求也在不断增加。为了支撑业务的发展,我们需要建立更加高效、便捷的数据共享机制和平台。同时,为了提升数据治理的规范化和专业化水平,我们需要建立完善的数据治理标准体系、认证机制和培训体系。这些措施将有助于推动数据治理工作的不断发展和完善,为企业和社会带来更多的价值。

总之,未来数据治理和共享平台建设面临着许多挑战和机遇。我们需要不断创新、完善管理、提升技术,为实现数字化转型和智能化升级做出更大的贡献。

第37张

今天的分享就到这里,谢谢大家!

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

公众号:优享智库

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值