最大算式和最大乘积的比较(dp思想)

问题一:
在这里插入图片描述
问题二:
在这里插入图片描述

        这两个题目都涉及到动态规划的知识,在我认为第一个题目要难一些,主要是需进行最大资源分配,我们来看dp[i][j]表示前i个数中有j个乘号,其实在最大乘积中也是这样的一个思想,但是在最大算式中,我们需要考虑加号和乘号的分配,这里有一个sum[]数组,sum[i]表示前i个数之和,则j~k的和就为sum[k]-sum[j-1],这一个很关键,但是对应的状态转移方程是什么?
        我们从第二个数起开始来添加乘号直至最后一个数,很多其它博客直接把状态转移方程写出来为:d[i][j] = max(dp[i][j], dp[l-1][j-1]*(sum[i]-sum[l-1])),l表示第j个乘号后的数,但为什么呢?
在这里插入图片描述
        可以看出一点特征,再有一个乘号时,我们实际上是用减号来替代了加和,依据乘号的不同位置(与l有关)找出第一个乘号的最大值,然后可以在有一个乘号中的最大值中再寻找有两个乘号的最大值…,不断向上求解至k个乘号。
        核心代码:

for(i = 1; i <= n; i++){
		cin>>temp;
		//计算前i个数之和及无乘号状态下的dp[][0] 
		sum[i] = sum[i-1]+temp;
		dp[i][0] = sum[i];
	}

        这是在j == 0时,也就是无乘号求解dp[i][0]

for(i = 2; i <= n; i++)
	{
		for(j = 1; j <= i-1&&j <= k; j++)
		{
			for(L = 2; L <= n; L++)//代表在插入乘号的后一位数 
			{
				//状态转移方程
				dp[i][j] = max(dp[i][j], dp[L-1][j-1]*(sum[i]-sum[L-1])); 
			}
		}	
	}

        这是核心,有一个乘号必须至少两个数,i从2开始取,有一个细节就是乘号必须比数的个数要小满足j <= i-1,之后就是表示进行插入乘号,每次的插入都是在前一次的基础上进行插入的所以才会有dp[l-1][j-1]。
        完整代码:

#include<iostream> 
using namespace std;
long long dp[16][16];
int sum[16] = {0};
int main()
{
	int i, j, n, k, temp, L;
	//n个数,k个称号 
	cin>>n>>k;
	for(i = 1; i <= n; i++){
		cin>>temp;
		//计算前i个数之和及无乘号状态下的dp[][0] 
		sum[i] = sum[i-1]+temp;
		dp[i][0] = sum[i];
	}
	//核心,计算dp[i][j]直至最后一位 
	for(i = 2; i <= n; i++)
	{
		for(j = 1; j <= i-1&&j <= k; j++)
		{
			for(L = 2; L <= n; L++)//代表在插入乘号的后一位数 
			{
				//状态转移方程
				dp[i][j] = max(dp[i][j], dp[L-1][j-1]*(sum[i]-sum[L-1])); 
			}
		}	
	}
	printf("%lld", dp[n][k]);
	return 0;	 
}

        第二题相对第一题就好多了,主要就是状态转移方程更加容易找,你看,主要就是乘号的插入分配,也不涉及加号,dp[i][j]表示前i个数中有j个乘号,我们不难看出dp[i][j]实际上可以理解为dp[u][j-1]在乘以(u+1)~i之间的数,取其最大值,则状态转移方程为:dp[i][j] = max(dp[i][j], dp[u][j-1]*Change(u+1, i)),这写出来了这一题也就写出来了
        需要注意的是,再求Change(u+1, i)时,本人理解错了,实际上为sum *= 10; sum += s[i]-‘0’; 在求上一位数时,前一个sum乘10实际上是为下一位提供个位数的
        完整代码:

#include<iostream>
#include<cstring>
using namespace std;
char s[50];
long long Change(int m, int n);
int main()
{
	int n, k, i, j, u; long long dp[42][8];
	cin>>n>>k;
	memset(dp, 0, sizeof(dp));
	for(i = 0; i < n; i++)
	{
		cin>>s[i];
		dp[i][0] = Change(0, i);	
	}
	for(i = 1; i < n; i++)
	{
		for(j = 1; j <= k; j++)
		{
			for(u = 0; u < i; u++)
				dp[i][j] = max(dp[i][j], dp[u][j-1]*Change(u+1, i));
		}
	}
	printf("%lld", dp[n-1][k]);
	return 0;
}

long long Change(int m, int n)
{
	long long i, sum = 0;
	for(i = m; i <= n; i++)
	{
		//从低位开始,这里写的比较精妙,每次上一位乘10再加低位, 
		sum *= 10;
		sum += s[i]-'0';
	}
	return sum;	
} 

        我认为关于动态规划类型的题目,也许不是一下就能够去解决的,首先你必须将问题分解为一个一个小问题,针对问题本身,能否将上一个问题所得到的有用数据应用这这一阶段上,重要的将其关系找出来,才能够将状态转移方程写出来,对于这类问题,还是要多练、多分析、多总结,掌握设计的方法和技巧,熟悉解题的套路,做到看题就知道对应关系以及如何利用得到的关系解题,这就差不多了…

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值