TF2-复现LeNet与AlexNet

本文介绍了如何使用Tensorflow 2复现经典的卷积神经网络LeNet和AlexNet。LeNet5由Yan LeCun提出,奠定了CNN的基础;AlexNet则引入了ReLU、Dropout和LRN等技术,并首次利用GPU加速计算,成为2012年ImageNet竞赛的冠军。文章提供了简单的网络结构和实现代码,并鼓励读者自行尝试。
摘要由CSDN通过智能技术生成

从这期开始,我们将开始基于Tensorflow 2逐步复现深度学习发展过程中的经典网络。这期我们将复现经典卷积神经网络中的经典——LeNet与AlexNet。

CNN

卷积的原理与池化的作用这里我们不过多介绍。一个卷积神经网络一般包含输入层、卷积层、输出层,但在真正使用的时候,一般会使用多层卷积去不断的提取特征,特征越抽象,越有利于识别。通常卷积神经网络还包含池化层、全连接层,以及最后的输出层。下面是一个Tensorflow 2实现的简单卷积神经网络。

#普通cnn网络
class Baseline(Model):
    def __init__(self)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DataAssassin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值