基于TF2.7-UNet的遥感影像建筑物语义分割

本文介绍了基于tensorflow2.7构建UNet网络进行遥感影像建筑物语义分割的过程,包括数据预处理、网络构建、模型训练和评估。使用Inria Aerial Image Labeling Dataset,通过随机裁剪生成训练样本,训练40轮后模型表现出较好的收敛性,实验证明分割效果良好,IOU指标展示了模型的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天我们将基于tensorflow2.7深度学习框架构建UNet网络并实现建筑物遥感影像的语义分割。文章将分成以下几个部分。

  • 数据预处理
  • 网络构建
  • 模型训练
  • 模型评估

本次数据集使用的是Inria Aerial Image Labeling Dataset,它是一个用于城市建筑物检测的遥感图像数据集,其标记被分为建筑和非建筑两种,主要用于语义分割。

数据预处理

我们可以从它的官网https://project.inria.fr/aerialimagelabeling/下载数据集,数据集包含Training Set、Validation Set、Test Set三个部分,分别包含136,4,10幅1500*1500大小的遥感影像与对应的标签影像。部分数据如下所示。

在这里插入图片描述

我们定义一个随机裁剪函数,将训练与验证数据随机裁剪成256*256大小的数据集,构建我们的样本库。

size = 
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DataAssassin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值