【sklearn使用】sklearn中调用R2(回归问题评价指标)的3种方式

写在前面: 因为我在使用sklearn的过程中,看了很多其他人的实战代码,调用R2的方式都不同,所以给我搞得有点糊涂,不过我看了菜菜的sklearn课程以后,感觉清晰了一点,所以整理了这篇笔记。

1. 决定系数R2
  • 公式如下:
    在这里插入图片描述
    在这里插入图片描述
  • 作用:反映因变量y的全部变异能通过回归关系被自变量解释的比例。根据R2的取值,来判断模型的好坏。
  • 取值范围:[0,1],若结果为0,说明该模型完全无法预测目标变量,若结果为1,说明模型拟合效果非常完美。
  • 0到1之间的数值泽表示模型中目标变量中有百分之几能够用特征来解释。一般来说,R2的值越接近1,则模型拟合效果越好;反之,越接近0,则模型预测精度越差。
2. sklearn中调用R2的三种方式
2.1 直接从metrics中导入r2_score,输入预测值和真实值后打分
from sklearn.metrics import r2_score
r2_score(y_test,y_pred) 

一定要注意,参数的先后顺序。
其中,y_test是y的真实值,y_pred是通过模型预测得到的y的预测值。

2.2 使用回归模型的.score属性
r2 = reg.score(x_test,y_test)

其中,reg为实例化得到的回归模型预估器,x_test为测试集中的x,y_test为测试集中的y。
如果预估器reg是分类器模型,那么score返回的是分类的accuracy值。

2.3 使用cross_val_score交叉验证分数
cross_val_score(reg,x,y,cv=10,scoring="r2").mean()

cv表示交叉验证的折数


参考:sklearn菜菜的b站视频。

如果这篇博文对你有用,请点个赞哦~

使用scikit-learn(简称sklearn)库进行线性回归模型的训练一般包括以下几个步骤: 1. 导入必要的库和数据集:首先需要导入sklearn库中的linear_model模块,以及需要的数据集。如果使用自带的数据集,直接导入即可;如果使用外部数据,则需要先加载数据。 2. 准备数据:将数据集分为特征变量(X)和目标变量(y)。特征变量是模型的输入,而目标变量是模型预测的输出。如果是分类数据,需要将其转换为数值类型。 3. 划分训练集和测试集:使用sklearn的model_selection模块中的train_test_split函数,将数据集分为训练集和测试集,以评估模型的性能。 4. 创建线性回归模型:使用linear_model模块中的LinearRegression类创建一个线性回归模型实例。 5. 训练模型:使用训练集数据(X_train, y_train)调用模型的fit方法来训练模型。 6. 进行预测:使用训练好的模型对测试集(X_test)进行预测,得到预测结果。 7. 评估模型:根据模型的预测结果和实际值(y_test)来评估模型的性能,可以使用多种评估指标,如均方误差(MSE)或决定系数(R^2)等。 以下是一个简单的示例代码: ```python # 导入所需的库 from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error, r2_score import numpy as np # 假设X和y是已经加载的特征和目标变量 # X = ... # y = ... # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 创建线性回归模型实例 model = LinearRegression() # 训练模型 model.fit(X_train, y_train) # 进行预测 y_pred = model.predict(X_test) # 评估模型 mse = mean_squared_error(y_test, y_pred) r2 = r2_score(y_test, y_pred) print("MSE: ", mse) print("R^2: ", r2) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

想做一只快乐的修狗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值