【scikit-learn】sklearn.metrics.r2_score() 函数: 回归模型评估指标 R² 决定系数(拟合程度)

sklearn.metrics.r2_score

r2_score(决定系数)是 sklearn.metrics 提供的一个 回归模型评估指标,用于衡量 模型的拟合优度(Goodness of Fit)。它表示 模型对数据方差的解释能力,取值范围为 (-∞, 1]


1. r2_score 计算公式

R 2 = 1 − ∑ ( y i − y ^ i ) 2 ∑ ( y i − y ˉ ) 2 R^2 = 1 - \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \bar{y})^2} R2=1(yiyˉ)2(yiy^i)2
其中:

  • y i y_i yi 是真实值
  • y ^ i \hat{y}_i y^i 是预测值
  • y ˉ \bar{y} yˉ 是真实值的均值
  • ∑ ( y i − y ˉ ) 2 \sum (y_i - \bar{y})^2 (yiyˉ)2 表示 总方差(Total Variance)
  • ∑ ( y i − y ^ i ) 2 \sum (y_i - \hat{y}_i)^2 (yiy^i)2 表示 残差平方和(Residual Sum of Squares, RSS)

解释

  • R 2 R^2 R2 反映了 模型的解释能力
    • 接近 1:模型能很好地解释数据变化。
    • 接近 0:模型的预测效果和简单的均值预测差不多。
    • 小于 0:模型比均值预测更糟糕(可能是过拟合或模型选择错误)。

2. r2_score 代码示例

from sklearn.metrics import r2_score

# 真实值和预测值
y_true = [3.0, -0.5, 2.0, 7.0]
y_pred = [2.5, 0.0, 2.1, 7.8]

# 计算 R²
r2 = r2_score(y_true, y_pred)
print(f"R²: {r2:.2f}")

输出

R²: 0.95

解释

  • R² = 0.95,说明 模型能解释 95% 的数据方差,是一个较好的拟合结果。

3. r2_score 的参数

r2_score(y_true, y_pred, sample_weight=None, multioutput="uniform_average")
参数说明
y_true真实值
y_pred预测值
sample_weight样本权重
multioutputraw_values(返回每个输出的 R²)、uniform_average(默认,返回平均 R²)

(1) 计算 multioutput 选项

import numpy as np

y_true = np.array([[3, -0.5, 2, 7], [2, 1, 4, 6]])
y_pred = np.array([[2.5, 0.0, 2.1, 7.8], [2.1, 1.1, 3.9, 5.9]])

r2_raw = r2_score(y_true, y_pred, multioutput="raw_values")
r2_weighted = r2_score(y_true, y_pred, multioutput="variance_weighted")

print(f"逐列 R²: {r2_raw}")
print(f"加权平均 R²: {r2_weighted:.2f}")

4. r2_score 适用场景

  • 回归任务(如房价预测、气温预测)
  • 衡量模型的拟合优度
  • 需要解释模型对数据变化的解释能力

5. r2_score vs. 其他回归误差指标

指标计算公式适用场景
mean_absolute_error(MAE) 1 n ∑ ∣ y i − y ^ i ∣ \frac{1}{n} \sum |y_i - \hat{y}_i| n1yiy^i衡量误差的平均大小,对离群值不敏感
mean_squared_error(MSE) 1 n ∑ ( y i − y ^ i ) 2 \frac{1}{n} \sum (y_i - \hat{y}_i)^2 n1(yiy^i)2强调较大误差,对离群值敏感
root_mean_squared_error(RMSE) M S E \sqrt{MSE} MSE 与 MSE 相似,但单位与目标变量相同
r2_score解释方差比例衡量模型的拟合程度

示例:

from sklearn.metrics import mean_absolute_error, mean_squared_error

mae = mean_absolute_error(y_true, y_pred)
mse = mean_squared_error(y_true, y_pred)
rmse = mean_squared_error(y_true, y_pred, squared=False)

print(f"MAE: {mae:.2f}")
print(f"MSE: {mse:.2f}")
print(f"RMSE: {rmse:.2f}")

6. 结论

  • r2_score 计算 决定系数(R²),用于衡量 回归模型的拟合优度
  • 适用于 回归任务,解释模型能 解释数据变化的程度
  • 接近 1,表示模型拟合良好,接近 0 表示模型和均值预测差不多,小于 0 说明模型可能不合适。
  • 可与 MAE、MSE、RMSE 结合使用,以更全面评估模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值