【leetcode】(python) 10. Regular Expression Matching正则表达式匹配

Description

  1. Regular Expression Matching Hard

Given an input string (s) and a pattern §, implement regular expression matching with support for ‘.’ and ‘*’.

'.' Matches any single character.
'*' Matches zero or more of the preceding element.

The matching should cover the entire input string (not partial).

Note:

  • s could be empty and contains only lowercase letters a-z.
  • p could be empty and contains only lowercase letters a-z, and characters like .
    or *.

Example

  • Example 1:
Input:
s = "aa"
p = "a"
Output: false
Explanation: "a" does not match the entire string "aa".
  • Example 2:
Input:
s = "aa"
p = "a*"
Output: true
Explanation: '*' means zero or more of the precedeng element, 'a'. Therefore, by repeating 'a' once, it becomes "aa".
  • Example 3:
Input:
s = "ab"
p = ".*"
Output: true
Explanation: ".*" means "zero or more (*) of any character (.)".
  • Example 4:
Input:
s = "aab"
p = "c*a*b"
Output: true
Explanation: c can be repeated 0 times, a can be repeated 1 time. Therefore it matches "aab".
  • Example 5:
Input:
s = "mississippi"
p = "mis*is*p*."
Output: false

题意

给定输入字符串s和模式p,实现支持’.‘和’*‘的正则表达式匹配。
‘.’ 匹配任何单个字符,’ * '匹配前面元素的零个或多个。匹配覆盖整个输入字符串而不是部分。
(跟python中的正则表达式规则一样)

思路1 re.match

其实这题我最开始的想法竟然是分类讨论,就是看’.‘和’*'分别在不在模式p中,后来发现太多细节要考虑了,最后不了了之。后面参考思路一看,这不就是python中正则表达式的特性吗,直接用re模块的match方法解决便可。

code

class Solution:
    def isMatch(self, s: str, p: str) -> bool:
        return re.match('^' + p + '$',s) != None

【笔记】
re.match(pattern, string[, flags])

从首字母开始开始匹配,string如果包含pattern子串,则匹配成功,返回Match对象,失败则返回None,若要完全匹配,pattern要以$结尾。

^+$分别表示:

1、^:匹配输入字符串的开始位置。

2、+:匹配前面的子表达式一次或多次(大于等于1次)。

3、$:匹配输入字符串的结束位置。

思路2 递归

递归思路大致如下:

  • 若p为空,若s也为空,返回true,否则返回false。

  • 若p的长度为1,若s长度也为1,且相同或p为’.’,则返回true,否则返回false。

  • 若p的第二个字符为*,进行下列循环,若s不为空且首字符匹配(包括p[0]为’.’),调用递归函数匹配s和去掉前两个字符的p(这样做的原因是假设此时的星号的作用是让前面的字符出现0次,验证是否匹配),若匹配返回true;否则s去掉首字母(因为此时首字母匹配了,我们可以去掉s的首字母,而p由于星号的作用,可以有任意个首字母,所以不需要去掉),继续进行循环。

  • 若p的第二个字符不为*,若此时s为空返回false,否则判断首字符是否匹配,且从各自的第二个字符开始调用递归函数匹配。

code

class Solution:
    def isMatch(self, s: str, p: str) -> bool:
        if not p:
            return not s
        first_match = bool(s) and p[0] in {s[0], '.'}
        if len(p) >=2 and p[1] == '*':
            return first_match and self.isMatch(s[1:], p) or self.isMatch(s,p[2:])
        else:
            return first_match and self.isMatch(s[1:], p[1:])

递归的时间复杂度很大,faster than 15.17%

思路3 动态规划

用DP来解,定义一个二维的DP数组,其中dp[i][j]表示s[0,i)和p[0,j)是否match,然后有下面三种情况:

  • P[i][j] = P[i - 1][j - 1], if p[j - 1] != ‘*’ && (s[i - 1] == p[j - 1] || p[j - 1] == ‘.’);
  • P[i][j] = P[i][j - 2], if p[j - 1] == ‘*’ and the pattern repeats for 0 times;
  • P[i][j] = P[i - 1][j] && (s[i - 1] == p[j - 2] || p[j - 2] == ‘.’), if p[j - 1] == ‘*’ and the pattern repeats for at least 1 times.

code

class Solution:
    def isMatch(self, s: str, p: str) -> bool:
        dp=[[False for i in range(len(p)+1)] for j in range(len(s)+1)]
        dp[0][0]= True
        for j in range(1, len(p)+1):
            if p[j-1] == '*':
                if j >= 2:
                    dp[0][j] = dp[0][j-2]
        for i in range(1, len(s)+1):
            for j in range(1, len(p)+1):
                if p[j-1] != '*' and (s[i-1] == p[j-1] or p[j-1] == '.'):
                    dp[i][j] = dp[i-1][j-1]
                elif p[j-1] == '*':
                    dp[i][j] =dp[i-1][j] and (s[i-1] == p[j-2] or p[j-2] == '.')  or dp[i][j-2]
        return dp[len(s)][len(p)]

注意: 当p[j-1] == '*'时还是要考虑dp[i][j-2]的情况。

又周五了,一周过好快。明天去刷英语6级分数啦。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值