论文总结:差分隐私研究综述,a survey

原文链接


介绍

This survey provides a comprehensive and structured overview of two research directions: differentially private data publishing and differentially private data analysis

这篇文章是IEEE的调查文章,也算是综述文章
他将DP分成了两个研究方向:DP数据发布和DP数据分析

Data publishing aims to share datasets or some query results to the public

Data analysis aims topreserve privacy during the analysis process

在这里插入图片描述


概念

在这里插入图片描述
在这里插入图片描述
注意,exp(ε)可以写成eε
概念的定义多种多样但都大差不差,再放一片中文综述的定义

δ是用于限制模型行为任意改变的概率,通常设置为一个小的常数,推荐设置小于训练数据集大小的倒数。

在这里插入图片描述
注意,这个定义只对随机算法有意义。给出确定性输出的算法都不适合差分隐私。


隐私预算

在上述的定义中,ε表示隐私预算,即The Privacy Budget
这个值越小,表示作用在相邻数据集上的差分隐私算法返回的结果查询概率分布越相似

对于隐私预算一般选取0.01或者0.1
在这里插入图片描述

对于隐私预算来说有两个重要的性质
分别是平行构成和顺序构成
在这里插入图片描述
throrem2是顺序构成的性质,这个性质说明当一个数据集中用了很多次相同的算法序列时,最终的差分隐私预算值ε等价于所有用过的运算之和。

thorem1是平行构成,当一个算法集合分别作用在一个数据集上的不同子集时,最终的差分隐私预算等价于所有隐私预算的最大值

这两个机制在设计差分隐私时有重要的作用,可以用来控制隐私预算的值
例如:如果在一个较低隐私预算参数ε 的情况下, 攻击者对一个数据集进行了多次查询, 那么根据throrem2, 攻击者实际上获得的隐私预算就相当于获得了多次查询的隐私预算的和, 而这就破坏了原本设定的隐私预算。所以需要控制隐私预算的上限, 来通过上述的性质来计算合适的隐私预算上限

另外还有两个不太重要的性质
在这里插入图片描述在这里插入图片描述


差分隐私模型

差分隐私可以通过在查询结果上加入噪声来实现对用户隐私信息的保护, 而噪声量的大小是一个关键的量, 要使加入的噪声既能保护用户隐私, 又不能使数据因为加入过多的噪声而导致数据不可用

函数敏感度是控制噪声的重要参数

在这里插入图片描述
全局敏感度反映了一个查询函数在一对相邻数据集上进行查询时变化的最大范围。它与数据集无关, 只由查询函数本身决定。

任意满足差分隐私定义的式子都可以被认为是DP,目前有两种应用最广泛的机制来实现DP

拉普拉斯机制:
在这里插入图片描述
在这里插入图片描述

Laplace分布是统计学中的概念,是一种连续的概率分布。如果随机变量的概率密度函数分布为:
在这里插入图片描述


该机制可以后期处理聚合查询(例如,计数、总和和均值)

缺点:但是当全局敏感度较大时, 根据全局敏感度生成的噪声往往会对数据提供过度的保护
改进:Nissim 等人提出了一个局部敏感度以及平滑敏感度等新的概念来解决这一问题。

指数机制
在这里插入图片描述
以上两种机制是最基础的机制,另外还有很多拓展的机制,例如Sample-Aggregate 框架和矩阵机制主要被设计为交互式的模型应用于隐私保护和隐私发布/存储/交换的部分,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值