激活函数总结

1.激活函数的性质

  • 1.连续并可导(允许少数点不可导)的非线性函数
    • 可导的激活函数可直接数值优化来学习网络参数
  • 2.激活函数及其导函数要尽可能的简单
    • 利于提高网络计算效率
  • 3.激活函数的导函数的值域要在一个合适的区间
    • 大小合适保证网络训练效率和稳定性

2.常见激活函数

2.1 sigmoid型函数

Sigmoid型函数指有一类S型曲线函数,为两端饱和函数。

2.1.1 Logisitic函数

σ ( x ) = 1 ( 1 + e x p ( − x ) ) \sigma(x) = {1\over(1+exp(-x))} σ(x)=(1+exp(x))1

在这里插入图片描述

2.1.2 Tanh函数

t a n h ( x ) = e x p ( x ) − e x p ( − x ) e x p ( x ) + e x p ( − x ) tanh(x)={exp(x)-exp(-x) \over exp(x)+exp(-x)} tanh(x)=exp(x)+exp(x)exp(x)exp(x)

2.2 ReLU函数

ReLU实际上是一个斜坡函数,定义:
R e L U ( x ) = m a x ( 0 , x ) ReLU(x) = max(0,x) ReLU(x)=max(0,x)
其优点:

  • 采用ReLU的神经元只需要进行加、乘和比较的操作,计算上更加高效。
  • ReLU具有很好的稀疏性
  • 在优化方面,相比于sigmoid函数两端饱和,ReLU函数为左饱和,且在x>0时导数为1,在一定程度上缓解了神经网络的梯度消失问题,加速梯度下降的收敛速度。

缺点:

  • 其输出是非零中心化的,给后一层的神经网络引入偏置便宜,会影响梯度下降的效率
  • ReLU神经元在训练时比较容易死亡

2.2.1 LeakyReLU函数

L e a k y R e L U ( x ) = m a x ( 0 , x ) + γ m i n ( 0 , x ) LeakyReLU(x) = max(0,x)+\gamma min(0,x) LeakyReLU(x)=max(0,x)+γmin(0,x)
在输入 x < 0 x<0 x<0时,保持很小的梯度。可以使神经元非激活时也能以一个非零的梯度更新参数,避免永远不能被激活。

2.2.2 PReLU函数

P R e L U ( x ) = m a x ( 0 , x ) + γ i m i n ( 0 , x ) PReLU(x) = max(0,x)+\gamma_i min(0,x) PReLU(x)=max(0,x)+γimin(0,x)

2.2.3 ELU函数

E L U ( x ) = m a x ( 0 , x ) + m i n ( 0 , γ ( e x p ( x ) − 1 ) ) ELU(x) = max(0,x)+min(0,\gamma(exp(x)-1)) ELU(x)=max(0,x)+min(0,γ(exp(x)1))

2.2.4 softplus函数

S o f t p l u s ( x ) = l o g ( 1 + e x p ( x ) ) Softplus(x)=log(1+exp(x)) Softplus(x)=log(1+exp(x))
在这里插入图片描述

2.3 Swish函数

一种自门控激活函数
s w i s h ( x ) = x σ ( β x ) swish(x)=x \sigma( \beta x) swish(x)=xσ(βx)
在这里插入图片描述

2.4 GELU函数

G E L U ( x ) = x P ( X = < x ) GELU(x) = xP(X=<x) GELU(x)=xP(X=<x)

2.5 Maxout单元

m a x o u t ( x ) = m a x k ∈ [ 1 , k ] ( z K ) maxout(x) = max_{k\in[1,k]}(z_K) maxout(x)=maxk[1,k](zK)

常见激活函数及其导数

激活函数函数导数
Logistic函数 f ( x ) = 1 1 + e x p ( − x ) f(x) = {1\over{1+exp(-x)}} f(x)=1+exp(x)1 f ′ ( x ) = f ( x ) ( 1 − f ( x ) ) f^{'}(x)=f(x)(1-f(x)) f(x)=f(x)(1f(x))
Tanh函数 f ( x ) = e x p ( x ) − e x p ( − x ) e x p ( x ) + e x p ( − x ) f(x)={exp(x)-exp(-x) \over exp(x)+exp(-x)} f(x)=exp(x)+exp(x)exp(x)exp(x) f ′ ( x ) = 1 − f ( x ) 2 f^{'}(x)=1-f(x)^2 f(x)=1f(x)2
ReLU函数 f ( x ) = m a x ( 0 , x ) f(x) = max(0,x) f(x)=max(0,x) f ′ ( x ) = I f^{'}(x)=I f(x)=I
ELU函数 f ( x ) = m a x ( 0 , x ) + m i n ( 0 , γ ( e x p ( x ) − 1 ) ) f(x) =max(0,x)+min(0,\gamma(exp(x)-1)) f(x)=max(0,x)+min(0,γ(exp(x)1)) f ′ ( x ) = I ( x > 0 ) + I ( x = < 0 ) ⋅ γ e x p ( x ) f^{'}(x)=I(x>0)+I(x=<0)\cdot \gamma exp(x) f(x)=I(x>0)+I(x=<0)γexp(x)
SoftPlus函数 f ( x ) = l o g ( 1 + e x p ( x ) ) f(x) =log(1+exp(x)) f(x)=log(1+exp(x)) f ′ ( x ) = 1 1 + e x p ( − x ) f^{'}(x)={1 \over {1+exp(-x)}} f(x)=1+exp(x)1

参考:

  • 神经网络与深度学习,邱锡鹏
  • 其余文献不一一列举
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值