MBE风格

MBE风格

  • 来源
    是以法国设计师MBE来命名的一种相对独特的插画风格。他先是将他的作品发布在Dribbble平台上,后来逐渐流行起来的一种插画风格。

  • 作品
    在这里插入图片描述
    在这里插入图片描述在这里插入图片描述在这里插入图片描述

在这里插入图片描述

  • 特点
  1. 带有断点的描边线条且粗细适宜
    <但是断点并不适用与所有的图形中>

▲断点是随机的,根据作品需求<主要是位置>而获得断点。因为这些断点,从而打破了元素的封闭感<比如在大面积的封闭线条时>,创造出透气感<比如在线条比较密集的地方>,错落的设计让插画元素显得更加可爱有趣。
▲ 取适宜的粗细强度,而且线条更多的是使用黑色,使内容更加突出同时也会使内容变得相对而言要死板一些,缺乏生动性。

2.色彩溢出的视觉效果
<主要是色块的溢出>

▲如同油墨溢出的效果,让元素在视觉多行更加具有风格,同时非常贴合高光和阴影的变化特征。其含义应该是想表达物体通过光照折射出来的阴影,因为通常溢出的方向都是高光的对侧。
▲图形周围因为多为白色空白处,如果有一些简单的溢出则可以填补空白,如果溢出太多太复杂的话则会破坏应有的气氛,反而会显得图象较为杂乱而难以入人眼。溢出主要与作品的表达的思想有关。

比如这两个小可爱溢出了恋爱的火花哈哈哈↓在这里插入图片描述

  1. 配色

▲MBE的风格大多会追求表现力和统一性,在配色上会尽量遵循统一的配色规则,少有跳脱随性的配色,于是整体上给人的感觉是清晰而规律的。
▲主要有

1.单色系<主要找出物体的深浅关系而营造质感,从而有是会营造出一种有阴影的感觉,或者有时候会给人一种扁平化的立体感,使画面表达更加完整明确。>在这里插入图片描述
2.邻近色+补色<颜色基本范围为三个颜色以下,色相差也不会特别大,不会给人一种突兀的感觉,比如死亡芭比粉和荧光绿的搭配就会显的好low的。所以MBE风格的色彩差距都不会特别大,整体给人一种舒适舒服的感觉。而且不用刻意保持色相的单一性>
在这里插入图片描述
3. 邻近色+类似色
<邻近色是指在色环上相近的两个颜色。
类似色,类似就好了。比如,深蓝,蓝,淡蓝和白>
在这里插入图片描述
4.写实派
<遵循色彩基础原理进行配色,但是因为在不同环境中要表达不同的意思和物体与物体之间的关系,从而进行一定的改变,使得东西更加符合物体本身。>
在这里插入图片描述

4.图形

背景图更多的是小星星,小花瓣,圆形,加号之类的东西,然后分散在主体的周围。它的分散还和想要表达的思想有关,在哪个位置分散,分散多少,是大还是小都和主体所传达出来的感情有关系。

比如山中间那独一无二的不像云但偏偏就是云的云,而且色彩上也用的不是蓝色而是黄色。↓
在这里插入图片描述

关于Stable Diffusion中的MBE(Multi-Band Enhancement)风格模型实现与应用,虽然提供的参考资料并未直接提及此主题[^1],仍可以基于现有知识框架给出解释。 ### Stable Diffusion MBE 风格概述 Stable Diffusion是一种用于生成图像的强大工具,在艺术创作领域广泛应用。MBE风格指的是通过多频带增强技术来改进扩散过程中的细节表现力。这种风格能够使最终生成的作品具有更细腻的纹理和更高的清晰度。 ### 模型架构特点 为了实现MBE效果,通常会在原有基础上引入额外模块处理不同频率范围内的特征图谱: - **低频部分**:负责捕捉整体结构信息; - **高频部分**:专注于局部边缘及细节点缀; 两者经过融合操作后输入到下一层网络继续迭代优化直至完成整个渲染流程。 ```python import torch.nn as nn class MBEDiffusionModel(nn.Module): def __init__(self, base_model_config): super(MBEDiffusionModel, self).__init__() # 定义基础模型配置 self.base_model = create_base_diffusion(base_model_config) # 添加MBE组件 self.low_freq_extractor = LowFrequencyExtractor() self.high_freq_enhancer = HighFrequencyEnhancer() def forward(self, x_t, timesteps): # 提取并增强高低频成分 low_frequencies = self.low_freq_extractor(x_t) high_frequencies = self.high_freq_enhancer(x_t) # 融合处理后的信号送入原生SD管道 combined_signal = combine_signals(low_frequencies, high_frequencies) output = self.base_model(combined_signal, timesteps) return output ``` ### 应用场景举例 在实际项目里,MBE风格化的Stable Diffusion可用于创建更加逼真的虚拟环境、游戏角色设计或是个性化头像制作等方面。它允许艺术家们更好地控制作品的艺术质感,满足多样化需求的同时提升了用户体验感。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值