机器学习中回归预测模型中常用四个评价指标MBE、MAE、RMSE、R2解释

在机器学习中,评估模型性能时常用的四个指标包括平均绝对误差(Mean Absolute Error, MAE)、均方误差(Mean Squared Error, MSE)、均方根误差(Root Mean Squared Error, RMSE)和决定系数(R-squared, R²)。

一、MBE(平均偏差误差)

  平均偏差误差(MBE)是衡量模型预测值与实际值之间偏差的指标。然而,值得注意的是,在常见的机器学习评估指标中,MBE并不如MAE、RMSE和R2那样广泛被提及或使用。在某些特定场景下,MBE可能被用作评估模型预测偏差的一个补充指标,但其具体定义和计算方法可能因应用场景的不同而有所差异。因此,在讨论机器学习评估指标时,MBE通常不是核心指标之一。
在这里插入图片描述

二、MAE(平均绝对误差)

  MAE 是预测值与实际值之差的绝对值的平均数。它给出了预测误差的平均大小,但不考虑误差的方向(正或负)。相比MSE和RMSE,MAE对异常值不敏感,不会因为少数大误差的平方而放大结果,适用于具有较多异常值的数据集。然而,MAE的缺点在于缺乏方向性,即它无法反映出误差是正偏还是负偏,可能不适用于需要区分偏差方向的应用场景。
在这里插入图片描述

三、RMSE(均方根误差)

  均方根误差(RMSE)是均方误差(MSE)的平方根。MSE是衡量预测值与实际值之间平方差的平均值,而RMSE则将其量级与原始数据保持一致,便于解释。由于计算了平方差,RMSE对大误差的惩罚更大,适合对误差敏感的场景。RMSE的单位与原数据相同,因此容易理解。然而,RMSE的缺点在于对异常值敏感,可能会因为少数大误差的平方而放大结果。
在这里插入图片描述

在这里插入图片描述

四、R2(决定系数)

  决定系数(R2)用于确定数据与拟合回归线的接近程度。它表示模型解释数据方差的比例,范围是0到1。R2的值越接近1,表示模型对数据的拟合程度越好;越接近0,表示模型对数据的拟合程度越差。R2的值被标准化在0到1之间,便于比较不同模型的性能。然而,R2的缺点在于:当数据的范围很大时,即使模型的预测值与实际值之间存在较大的偏差,R2的值也可能很高。R2无法直接反映模型是否过拟合,需要结合其他指标(如交叉验证)来评估模型的性能。

在这里插入图片描述

五、sklearns库里自带计算方法

1.方法一

# 导入
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from math import sqrt

#测试集四个指标
predictions = rf.predict(test_datas)# 预测结果
errors = (predictions-test_labels).astype(float)  # 计算
### PSNR、SSIM、MAERMSE 的计算公式 #### 峰值信噪比 (PSNR) 峰值信噪比是一种常用的图像质量评估指标,用于衡量重建图像的质量。其定义为: \[ \text{PSNR} = 10 \cdot \log_{10}\left(\frac{\text{MAX}_I^2}{\text{MSE}}\right) \] 其中, - \( \text{MAX}_I \) 是像素的最大可能强度值(对于8位灰度图像是255) - \( \text{MSE} \) 表示均方误差。 该公式的推导基于信号处理理论中的信噪比概念[^4]。 ```python import numpy as np def psnr(original_image, noisy_image): mse_value = np.mean((original_image - noisy_image)**2) max_pixel_value = 255.0 psnr_result = 20 * np.log10(max_pixel_value / np.sqrt(mse_value)) return psnr_result ``` #### 结构相似性指数 (SSIM) 结构相似性指数测量两个图像之间的感知差异,考虑亮度、对比度和结构三方面的变化。基本形式如下所示: \[ \text{SSIM}(x,y)=\frac{(2\mu_x\mu_y+C_1)(2\sigma_{xy}+C_2)}{(\mu_x^2+\mu_y^2+C_1)(\sigma_x^2+\sigma_y^2+C_2)} \] 这里 \( C_1=(K_1L)^2,C_2=(K_2L)^2 \),\( L \) 是动态范围,\( K_1,K_2 << 1 \)[^2]。 ```python from skimage.metrics import structural_similarity as ssim ssim_index, diff = ssim(imageA, imageB, full=True) ``` #### 平均绝对误差 (MAE) 平均绝对误差是指预测值与实际观测值之间差额的绝对值的平均数: \[ \text{MAE}=\frac{1}{n}\sum^n_{i=1}|y_i-\hat y_i| \] 此表达式适用于任何类型的数值数据集,在图像领域则指代像素级偏差[^3]。 ```python def mae(img1, img2): absolute_error_sum = np.sum(np.abs(img1.astype('float') - img2.astype('float'))) mean_absolute_error = absolute_error_sum / float(img1.shape[0] * img1.shape[1]) return mean_absolute_error ``` #### 均方根误差 (RMSE) 均方根误差是各数据偏离真实值之平方和的平均数再开平方的结果,即标准差的一种变形: \[ \text{RMSE}= \sqrt{\frac{1}{N}\sum^{N}_{i=1}(Y_i-Y'_i)^2 } \] 它反映了估计量与被估计量间的离散程度。 ```python def rmse(predictions, targets): differences = predictions - targets differences_squared = differences ** 2 mean_of_differences_squared = differences_squared.mean() rmse_val = np.sqrt(mean_of_differences_squared) return rmse_val ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值