不同分布所表示的物理含义

不同分布所表示的物理含义

需要注意的是,尽管存在各种各样不同的分布,但他们能够称为分布的前提条件是积分和代表概率,等于1。

泊松分布

问题对象:在特定时间里发生n个事件的概率

P ( N ( t ) = n ) = ( λ t ) n e − λ t n ! P\left( {N\left( t \right) = n} \right) = \frac{{{{\left( {\lambda t} \right)}^n}{e^{ - \lambda t}}}}{{n!}} P(N(t)=n)=n!(λt)neλt

其中 λ \lambda λ 代表事件发生频率,即单位事件内事件的发生率。

指数分布

问题对象:要等到一个随机事件发生,需要经历的时间

指数分布的公式可从泊松分布推断出来,即

P ( X > t ) = P ( N ( t ) = 0 ) = ( λ t ) 0 e − λ t 0 ! = e − λ t P\left( {X > t} \right) = P\left( {N\left( t \right) = 0} \right) = \frac{{{{\left( {\lambda t} \right)}^0}{e^{ - \lambda t}}}}{{0!}} = {e^{ - \lambda t}} P(X>t)=P(N(t)=0)=0!(λt)0eλt=eλt

指数分布依赖的参数 λ \lambda λ代表λ 表单位时间内事件的发生率。

伽马分布

问题对象:要等到n个随机事件发生,需要经历的时间

假设X1, X2, … Xn 为连续发生事件的等候时间,且这n次等候时间为独立的,那么这n次等候时间之和Y (Y=X1+X2+…+Xn)服从伽玛分布,即 Y ∼ Γ ( α , β ) Y \sim \Gamma(\alpha, \beta) YΓ(α,β),亦可记作 Y ∼ Γ ( α , λ ) Y \sim \Gamma(\alpha, \lambda) YΓ(α,λ)
f ( x ) = x α − 1 λ α Γ ( α ) e − λ x , x > 0 f\left( x \right) = \frac{{{x^{\alpha - 1}}{\lambda ^\alpha }}}{{\Gamma \left( \alpha \right)}}{e^{ - \lambda x}},x > 0 f(x)=Γ(α)xα1λαeλx,x>0
其中α = n,而 β 与λ互为倒数关系,λ 表单位时间内事件的发生率。另外,参数 α \alpha α代表形状参数, β \beta β代表尺度参数。

因此,伽马分布可看作是n个指数分布的独立随机变量的加和,而指数分布为 α = 1 \alpha=1 α=1的伽马分布。

附录:
伽马函数
自变量 z z z为实部为正的复数:
Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t , R e ( z ) > 0 \Gamma \left( z \right) = \int_0^\infty {{t^{z - 1}}{e^{ - t}}dt} ,{\mathop{\rm Re}\nolimits} \left( z \right) > 0 Γ(z)=0tz1etdt,Re(z)>0

自变量 α \alpha α为正实数:
Γ ( α ) = ∫ 0 ∞ t α − 1 e − t d t \Gamma \left( \alpha \right) = \int_0^\infty {{t^{\alpha - 1}}{e^{ - t}}dt} Γ(α)=0tα1etdt
伽马函数存在以下结论:
{ Γ ( α ) = ( α − 1 ) ! , α ∈ Z + Γ ( α ) = ( α − 1 ) Γ ( α − 1 ) , α ∈ R + Γ ( 1 2 ) = π \left\{ \begin{array}{l} \Gamma \left( \alpha \right) = \left( {\alpha - 1} \right)!,\alpha \in {Z^ + }\\ \Gamma \left( \alpha \right) = \left( {\alpha - 1} \right)\Gamma \left( {\alpha - 1} \right),\alpha \in {R^ + }\\ \Gamma \left( {\frac{1}{2}} \right) = \sqrt \pi \end{array} \right. Γ(α)=(α1)!,αZ+Γ(α)=(α1)Γ(α1),αR+Γ(21)=π

其他分布

负二项分布:
https://www.jianshu.com/p/ef6ffa83a242

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值